Metamath Proof Explorer


Theorem cgrtr4d

Description: Deduction form of axcgrtr . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrtr4d.1 ( 𝜑𝑁 ∈ ℕ )
cgrtr4d.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtr4d.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtr4d.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtr4d.5 ( 𝜑𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtr4d.6 ( 𝜑𝐸 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtr4d.7 ( 𝜑𝐹 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtr4d.8 ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ )
cgrtr4d.9 ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ )
Assertion cgrtr4d ( 𝜑 → ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ )

Proof

Step Hyp Ref Expression
1 cgrtr4d.1 ( 𝜑𝑁 ∈ ℕ )
2 cgrtr4d.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
3 cgrtr4d.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
4 cgrtr4d.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
5 cgrtr4d.5 ( 𝜑𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
6 cgrtr4d.6 ( 𝜑𝐸 ∈ ( 𝔼 ‘ 𝑁 ) )
7 cgrtr4d.7 ( 𝜑𝐹 ∈ ( 𝔼 ‘ 𝑁 ) )
8 cgrtr4d.8 ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ )
9 cgrtr4d.9 ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ )
10 axcgrtr ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) → ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) )
11 1 2 3 4 5 6 7 10 syl133anc ( 𝜑 → ( ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) → ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) )
12 8 9 11 mp2and ( 𝜑 → ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ )