Metamath Proof Explorer


Theorem cgrtr4and

Description: Deduction form of axcgrtr . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrtr4and.1 ( 𝜑𝑁 ∈ ℕ )
cgrtr4and.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtr4and.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtr4and.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtr4and.5 ( 𝜑𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtr4and.6 ( 𝜑𝐸 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtr4and.7 ( 𝜑𝐹 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtr4and.8 ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ )
cgrtr4and.9 ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ )
Assertion cgrtr4and ( ( 𝜑𝜓 ) → ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ )

Proof

Step Hyp Ref Expression
1 cgrtr4and.1 ( 𝜑𝑁 ∈ ℕ )
2 cgrtr4and.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
3 cgrtr4and.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
4 cgrtr4and.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
5 cgrtr4and.5 ( 𝜑𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
6 cgrtr4and.6 ( 𝜑𝐸 ∈ ( 𝔼 ‘ 𝑁 ) )
7 cgrtr4and.7 ( 𝜑𝐹 ∈ ( 𝔼 ‘ 𝑁 ) )
8 cgrtr4and.8 ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ )
9 cgrtr4and.9 ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ )
10 1 adantr ( ( 𝜑𝜓 ) → 𝑁 ∈ ℕ )
11 2 adantr ( ( 𝜑𝜓 ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
12 3 adantr ( ( 𝜑𝜓 ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
13 4 adantr ( ( 𝜑𝜓 ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
14 5 adantr ( ( 𝜑𝜓 ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
15 6 adantr ( ( 𝜑𝜓 ) → 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) )
16 7 adantr ( ( 𝜑𝜓 ) → 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) )
17 10 11 12 13 14 15 16 8 9 cgrtr4d ( ( 𝜑𝜓 ) → ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ )