Step |
Hyp |
Ref |
Expression |
1 |
|
cgrtr4and.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
cgrtr4and.2 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
3 |
|
cgrtr4and.3 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
4 |
|
cgrtr4and.4 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
5 |
|
cgrtr4and.5 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
6 |
|
cgrtr4and.6 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) |
7 |
|
cgrtr4and.7 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) |
8 |
|
cgrtr4and.8 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ) |
9 |
|
cgrtr4and.9 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ) |
10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑁 ∈ ℕ ) |
11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
15 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) |
16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) |
17 |
10 11 12 13 14 15 16 8 9
|
cgrtr4d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐸 , 𝐹 〉 ) |