| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cgrtr4and.1 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | cgrtr4and.2 | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 3 |  | cgrtr4and.3 | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 4 |  | cgrtr4and.4 | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 5 |  | cgrtr4and.5 | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 6 |  | cgrtr4and.6 | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 7 |  | cgrtr4and.7 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 8 |  | cgrtr4and.8 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 9 |  | cgrtr4and.9 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐸 ,  𝐹 〉 ) | 
						
							| 10 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑁  ∈  ℕ ) | 
						
							| 11 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 12 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 13 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 14 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 15 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 16 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐹  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 17 | 10 11 12 13 14 15 16 8 9 | cgrtr4d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  〈 𝐶 ,  𝐷 〉 Cgr 〈 𝐸 ,  𝐹 〉 ) |