Metamath Proof Explorer


Theorem cgrtr4and

Description: Deduction form of axcgrtr . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrtr4and.1 φ N
cgrtr4and.2 φ A 𝔼 N
cgrtr4and.3 φ B 𝔼 N
cgrtr4and.4 φ C 𝔼 N
cgrtr4and.5 φ D 𝔼 N
cgrtr4and.6 φ E 𝔼 N
cgrtr4and.7 φ F 𝔼 N
cgrtr4and.8 φ ψ A B Cgr C D
cgrtr4and.9 φ ψ A B Cgr E F
Assertion cgrtr4and φ ψ C D Cgr E F

Proof

Step Hyp Ref Expression
1 cgrtr4and.1 φ N
2 cgrtr4and.2 φ A 𝔼 N
3 cgrtr4and.3 φ B 𝔼 N
4 cgrtr4and.4 φ C 𝔼 N
5 cgrtr4and.5 φ D 𝔼 N
6 cgrtr4and.6 φ E 𝔼 N
7 cgrtr4and.7 φ F 𝔼 N
8 cgrtr4and.8 φ ψ A B Cgr C D
9 cgrtr4and.9 φ ψ A B Cgr E F
10 1 adantr φ ψ N
11 2 adantr φ ψ A 𝔼 N
12 3 adantr φ ψ B 𝔼 N
13 4 adantr φ ψ C 𝔼 N
14 5 adantr φ ψ D 𝔼 N
15 6 adantr φ ψ E 𝔼 N
16 7 adantr φ ψ F 𝔼 N
17 10 11 12 13 14 15 16 8 9 cgrtr4d φ ψ C D Cgr E F