Metamath Proof Explorer


Theorem cgrtr4and

Description: Deduction form of axcgrtr . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrtr4and.1
|- ( ph -> N e. NN )
cgrtr4and.2
|- ( ph -> A e. ( EE ` N ) )
cgrtr4and.3
|- ( ph -> B e. ( EE ` N ) )
cgrtr4and.4
|- ( ph -> C e. ( EE ` N ) )
cgrtr4and.5
|- ( ph -> D e. ( EE ` N ) )
cgrtr4and.6
|- ( ph -> E e. ( EE ` N ) )
cgrtr4and.7
|- ( ph -> F e. ( EE ` N ) )
cgrtr4and.8
|- ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. )
cgrtr4and.9
|- ( ( ph /\ ps ) -> <. A , B >. Cgr <. E , F >. )
Assertion cgrtr4and
|- ( ( ph /\ ps ) -> <. C , D >. Cgr <. E , F >. )

Proof

Step Hyp Ref Expression
1 cgrtr4and.1
 |-  ( ph -> N e. NN )
2 cgrtr4and.2
 |-  ( ph -> A e. ( EE ` N ) )
3 cgrtr4and.3
 |-  ( ph -> B e. ( EE ` N ) )
4 cgrtr4and.4
 |-  ( ph -> C e. ( EE ` N ) )
5 cgrtr4and.5
 |-  ( ph -> D e. ( EE ` N ) )
6 cgrtr4and.6
 |-  ( ph -> E e. ( EE ` N ) )
7 cgrtr4and.7
 |-  ( ph -> F e. ( EE ` N ) )
8 cgrtr4and.8
 |-  ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. )
9 cgrtr4and.9
 |-  ( ( ph /\ ps ) -> <. A , B >. Cgr <. E , F >. )
10 1 adantr
 |-  ( ( ph /\ ps ) -> N e. NN )
11 2 adantr
 |-  ( ( ph /\ ps ) -> A e. ( EE ` N ) )
12 3 adantr
 |-  ( ( ph /\ ps ) -> B e. ( EE ` N ) )
13 4 adantr
 |-  ( ( ph /\ ps ) -> C e. ( EE ` N ) )
14 5 adantr
 |-  ( ( ph /\ ps ) -> D e. ( EE ` N ) )
15 6 adantr
 |-  ( ( ph /\ ps ) -> E e. ( EE ` N ) )
16 7 adantr
 |-  ( ( ph /\ ps ) -> F e. ( EE ` N ) )
17 10 11 12 13 14 15 16 8 9 cgrtr4d
 |-  ( ( ph /\ ps ) -> <. C , D >. Cgr <. E , F >. )