| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cgrtr4and.1 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | cgrtr4and.2 |  |-  ( ph -> A e. ( EE ` N ) ) | 
						
							| 3 |  | cgrtr4and.3 |  |-  ( ph -> B e. ( EE ` N ) ) | 
						
							| 4 |  | cgrtr4and.4 |  |-  ( ph -> C e. ( EE ` N ) ) | 
						
							| 5 |  | cgrtr4and.5 |  |-  ( ph -> D e. ( EE ` N ) ) | 
						
							| 6 |  | cgrtr4and.6 |  |-  ( ph -> E e. ( EE ` N ) ) | 
						
							| 7 |  | cgrtr4and.7 |  |-  ( ph -> F e. ( EE ` N ) ) | 
						
							| 8 |  | cgrtr4and.8 |  |-  ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. ) | 
						
							| 9 |  | cgrtr4and.9 |  |-  ( ( ph /\ ps ) -> <. A , B >. Cgr <. E , F >. ) | 
						
							| 10 | 1 | adantr |  |-  ( ( ph /\ ps ) -> N e. NN ) | 
						
							| 11 | 2 | adantr |  |-  ( ( ph /\ ps ) -> A e. ( EE ` N ) ) | 
						
							| 12 | 3 | adantr |  |-  ( ( ph /\ ps ) -> B e. ( EE ` N ) ) | 
						
							| 13 | 4 | adantr |  |-  ( ( ph /\ ps ) -> C e. ( EE ` N ) ) | 
						
							| 14 | 5 | adantr |  |-  ( ( ph /\ ps ) -> D e. ( EE ` N ) ) | 
						
							| 15 | 6 | adantr |  |-  ( ( ph /\ ps ) -> E e. ( EE ` N ) ) | 
						
							| 16 | 7 | adantr |  |-  ( ( ph /\ ps ) -> F e. ( EE ` N ) ) | 
						
							| 17 | 10 11 12 13 14 15 16 8 9 | cgrtr4d |  |-  ( ( ph /\ ps ) -> <. C , D >. Cgr <. E , F >. ) |