| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cgrtr4and.1 |
|- ( ph -> N e. NN ) |
| 2 |
|
cgrtr4and.2 |
|- ( ph -> A e. ( EE ` N ) ) |
| 3 |
|
cgrtr4and.3 |
|- ( ph -> B e. ( EE ` N ) ) |
| 4 |
|
cgrtr4and.4 |
|- ( ph -> C e. ( EE ` N ) ) |
| 5 |
|
cgrtr4and.5 |
|- ( ph -> D e. ( EE ` N ) ) |
| 6 |
|
cgrtr4and.6 |
|- ( ph -> E e. ( EE ` N ) ) |
| 7 |
|
cgrtr4and.7 |
|- ( ph -> F e. ( EE ` N ) ) |
| 8 |
|
cgrtr4and.8 |
|- ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. ) |
| 9 |
|
cgrtr4and.9 |
|- ( ( ph /\ ps ) -> <. A , B >. Cgr <. E , F >. ) |
| 10 |
1
|
adantr |
|- ( ( ph /\ ps ) -> N e. NN ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ ps ) -> A e. ( EE ` N ) ) |
| 12 |
3
|
adantr |
|- ( ( ph /\ ps ) -> B e. ( EE ` N ) ) |
| 13 |
4
|
adantr |
|- ( ( ph /\ ps ) -> C e. ( EE ` N ) ) |
| 14 |
5
|
adantr |
|- ( ( ph /\ ps ) -> D e. ( EE ` N ) ) |
| 15 |
6
|
adantr |
|- ( ( ph /\ ps ) -> E e. ( EE ` N ) ) |
| 16 |
7
|
adantr |
|- ( ( ph /\ ps ) -> F e. ( EE ` N ) ) |
| 17 |
10 11 12 13 14 15 16 8 9
|
cgrtr4d |
|- ( ( ph /\ ps ) -> <. C , D >. Cgr <. E , F >. ) |