Step |
Hyp |
Ref |
Expression |
1 |
|
cgrtr4and.1 |
|- ( ph -> N e. NN ) |
2 |
|
cgrtr4and.2 |
|- ( ph -> A e. ( EE ` N ) ) |
3 |
|
cgrtr4and.3 |
|- ( ph -> B e. ( EE ` N ) ) |
4 |
|
cgrtr4and.4 |
|- ( ph -> C e. ( EE ` N ) ) |
5 |
|
cgrtr4and.5 |
|- ( ph -> D e. ( EE ` N ) ) |
6 |
|
cgrtr4and.6 |
|- ( ph -> E e. ( EE ` N ) ) |
7 |
|
cgrtr4and.7 |
|- ( ph -> F e. ( EE ` N ) ) |
8 |
|
cgrtr4and.8 |
|- ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. ) |
9 |
|
cgrtr4and.9 |
|- ( ( ph /\ ps ) -> <. A , B >. Cgr <. E , F >. ) |
10 |
1
|
adantr |
|- ( ( ph /\ ps ) -> N e. NN ) |
11 |
2
|
adantr |
|- ( ( ph /\ ps ) -> A e. ( EE ` N ) ) |
12 |
3
|
adantr |
|- ( ( ph /\ ps ) -> B e. ( EE ` N ) ) |
13 |
4
|
adantr |
|- ( ( ph /\ ps ) -> C e. ( EE ` N ) ) |
14 |
5
|
adantr |
|- ( ( ph /\ ps ) -> D e. ( EE ` N ) ) |
15 |
6
|
adantr |
|- ( ( ph /\ ps ) -> E e. ( EE ` N ) ) |
16 |
7
|
adantr |
|- ( ( ph /\ ps ) -> F e. ( EE ` N ) ) |
17 |
10 11 12 13 14 15 16 8 9
|
cgrtr4d |
|- ( ( ph /\ ps ) -> <. C , D >. Cgr <. E , F >. ) |