Metamath Proof Explorer


Theorem cgrtr4d

Description: Deduction form of axcgrtr . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrtr4d.1
|- ( ph -> N e. NN )
cgrtr4d.2
|- ( ph -> A e. ( EE ` N ) )
cgrtr4d.3
|- ( ph -> B e. ( EE ` N ) )
cgrtr4d.4
|- ( ph -> C e. ( EE ` N ) )
cgrtr4d.5
|- ( ph -> D e. ( EE ` N ) )
cgrtr4d.6
|- ( ph -> E e. ( EE ` N ) )
cgrtr4d.7
|- ( ph -> F e. ( EE ` N ) )
cgrtr4d.8
|- ( ph -> <. A , B >. Cgr <. C , D >. )
cgrtr4d.9
|- ( ph -> <. A , B >. Cgr <. E , F >. )
Assertion cgrtr4d
|- ( ph -> <. C , D >. Cgr <. E , F >. )

Proof

Step Hyp Ref Expression
1 cgrtr4d.1
 |-  ( ph -> N e. NN )
2 cgrtr4d.2
 |-  ( ph -> A e. ( EE ` N ) )
3 cgrtr4d.3
 |-  ( ph -> B e. ( EE ` N ) )
4 cgrtr4d.4
 |-  ( ph -> C e. ( EE ` N ) )
5 cgrtr4d.5
 |-  ( ph -> D e. ( EE ` N ) )
6 cgrtr4d.6
 |-  ( ph -> E e. ( EE ` N ) )
7 cgrtr4d.7
 |-  ( ph -> F e. ( EE ` N ) )
8 cgrtr4d.8
 |-  ( ph -> <. A , B >. Cgr <. C , D >. )
9 cgrtr4d.9
 |-  ( ph -> <. A , B >. Cgr <. E , F >. )
10 axcgrtr
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. C , D >. /\ <. A , B >. Cgr <. E , F >. ) -> <. C , D >. Cgr <. E , F >. ) )
11 1 2 3 4 5 6 7 10 syl133anc
 |-  ( ph -> ( ( <. A , B >. Cgr <. C , D >. /\ <. A , B >. Cgr <. E , F >. ) -> <. C , D >. Cgr <. E , F >. ) )
12 8 9 11 mp2and
 |-  ( ph -> <. C , D >. Cgr <. E , F >. )