| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 2 |  | simp3 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 3 |  | simp2 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 4 |  | axcgrrflx |  |-  ( ( N e. NN /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) -> <. B , A >. Cgr <. A , B >. ) | 
						
							| 5 | 4 | 3com23 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. B , A >. Cgr <. A , B >. ) | 
						
							| 6 | 1 2 3 3 2 3 2 5 5 | cgrtr4d |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. A , B >. ) |