Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> N e. NN ) |
2 |
|
simp3 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
3 |
|
simp2 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
4 |
|
axcgrrflx |
|- ( ( N e. NN /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) -> <. B , A >. Cgr <. A , B >. ) |
5 |
4
|
3com23 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. B , A >. Cgr <. A , B >. ) |
6 |
1 2 3 3 2 3 2 5 5
|
cgrtr4d |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. A , B >. ) |