Description: Deduction form of cgrrflx . (Contributed by Scott Fenton, 13-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cgrrflxd.1 | |- ( ph -> N e. NN ) |
|
cgrrflxd.2 | |- ( ph -> A e. ( EE ` N ) ) |
||
cgrrflxd.3 | |- ( ph -> B e. ( EE ` N ) ) |
||
Assertion | cgrrflxd | |- ( ph -> <. A , B >. Cgr <. A , B >. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgrrflxd.1 | |- ( ph -> N e. NN ) |
|
2 | cgrrflxd.2 | |- ( ph -> A e. ( EE ` N ) ) |
|
3 | cgrrflxd.3 | |- ( ph -> B e. ( EE ` N ) ) |
|
4 | cgrrflx | |- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. A , B >. ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> <. A , B >. Cgr <. A , B >. ) |