Metamath Proof Explorer


Theorem cgrrflxd

Description: Deduction form of cgrrflx . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrrflxd.1
|- ( ph -> N e. NN )
cgrrflxd.2
|- ( ph -> A e. ( EE ` N ) )
cgrrflxd.3
|- ( ph -> B e. ( EE ` N ) )
Assertion cgrrflxd
|- ( ph -> <. A , B >. Cgr <. A , B >. )

Proof

Step Hyp Ref Expression
1 cgrrflxd.1
 |-  ( ph -> N e. NN )
2 cgrrflxd.2
 |-  ( ph -> A e. ( EE ` N ) )
3 cgrrflxd.3
 |-  ( ph -> B e. ( EE ` N ) )
4 cgrrflx
 |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. A , B >. )
5 1 2 3 4 syl3anc
 |-  ( ph -> <. A , B >. Cgr <. A , B >. )