Metamath Proof Explorer


Theorem cgrrflxd

Description: Deduction form of cgrrflx . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrrflxd.1 φN
cgrrflxd.2 φA𝔼N
cgrrflxd.3 φB𝔼N
Assertion cgrrflxd φABCgrAB

Proof

Step Hyp Ref Expression
1 cgrrflxd.1 φN
2 cgrrflxd.2 φA𝔼N
3 cgrrflxd.3 φB𝔼N
4 cgrrflx NA𝔼NB𝔼NABCgrAB
5 1 2 3 4 syl3anc φABCgrAB