Metamath Proof Explorer


Theorem cgrrflxd

Description: Deduction form of cgrrflx . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrrflxd.1 ( 𝜑𝑁 ∈ ℕ )
cgrrflxd.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrrflxd.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
Assertion cgrrflxd ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ )

Proof

Step Hyp Ref Expression
1 cgrrflxd.1 ( 𝜑𝑁 ∈ ℕ )
2 cgrrflxd.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
3 cgrrflxd.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
4 cgrrflx ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ )
5 1 2 3 4 syl3anc ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ )