Description: Deduction form of cgrrflx . (Contributed by Scott Fenton, 13-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cgrrflxd.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| cgrrflxd.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) | ||
| cgrrflxd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) | ||
| Assertion | cgrrflxd | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐴 , 𝐵 〉 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cgrrflxd.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 2 | cgrrflxd.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) | |
| 3 | cgrrflxd.3 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) | |
| 4 | cgrrflx | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐴 , 𝐵 〉 ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐴 , 𝐵 〉 ) |