Metamath Proof Explorer


Theorem cgrcomim

Description: Congruence commutes on the two sides. Implication version. Theorem 2.2 of Schwabhauser p. 27. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrcomim N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D C D Cgr A B

Proof

Step Hyp Ref Expression
1 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N N
2 simp2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A 𝔼 N
3 simp2r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B 𝔼 N
4 simp3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C 𝔼 N
5 simp3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N D 𝔼 N
6 simpr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D A B Cgr C D
7 simpl1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D N
8 simpl2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D A 𝔼 N
9 simpl2r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D B 𝔼 N
10 7 8 9 cgrrflxd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D A B Cgr A B
11 1 2 3 4 5 2 3 6 10 cgrtr4and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D C D Cgr A B
12 11 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D C D Cgr A B