Metamath Proof Explorer


Theorem cgrcom

Description: Congruence commutes between the two sides. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrcom N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D C D Cgr A B

Proof

Step Hyp Ref Expression
1 cgrcomim N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D C D Cgr A B
2 cgrcomim N C 𝔼 N D 𝔼 N A 𝔼 N B 𝔼 N C D Cgr A B A B Cgr C D
3 2 3com23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D Cgr A B A B Cgr C D
4 1 3 impbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D C D Cgr A B