Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Geometry in the Euclidean space
Congruence properties
cgrcom
Next ⟩
cgrcomand
Metamath Proof Explorer
Ascii
Unicode
Theorem
cgrcom
Description:
Congruence commutes between the two sides.
(Contributed by
Scott Fenton
, 12-Jun-2013)
Ref
Expression
Assertion
cgrcom
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
→
A
B
Cgr
C
D
↔
C
D
Cgr
A
B
Proof
Step
Hyp
Ref
Expression
1
cgrcomim
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
→
A
B
Cgr
C
D
→
C
D
Cgr
A
B
2
cgrcomim
⊢
N
∈
ℕ
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
→
C
D
Cgr
A
B
→
A
B
Cgr
C
D
3
2
3com23
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
→
C
D
Cgr
A
B
→
A
B
Cgr
C
D
4
1
3
impbid
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
→
A
B
Cgr
C
D
↔
C
D
Cgr
A
B