Description: Deduction form of axcgrrflx . (Contributed by Scott Fenton, 13-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cgrrflx2d.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| cgrrflx2d.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) | ||
| cgrrflx2d.3 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) | ||
| Assertion | cgrrflx2d | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐵 , 𝐴 〉 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cgrrflx2d.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 2 | cgrrflx2d.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) | |
| 3 | cgrrflx2d.3 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) | |
| 4 | axcgrrflx | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐵 , 𝐴 〉 ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐵 , 𝐴 〉 ) |