Metamath Proof Explorer


Theorem cgrrflx2d

Description: Deduction form of axcgrrflx . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrrflx2d.1 ( 𝜑𝑁 ∈ ℕ )
cgrrflx2d.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrrflx2d.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
Assertion cgrrflx2d ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐵 , 𝐴 ⟩ )

Proof

Step Hyp Ref Expression
1 cgrrflx2d.1 ( 𝜑𝑁 ∈ ℕ )
2 cgrrflx2d.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
3 cgrrflx2d.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
4 axcgrrflx ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐵 , 𝐴 ⟩ )
5 1 2 3 4 syl3anc ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐵 , 𝐴 ⟩ )