Description: Deduction form of axcgrrflx . (Contributed by Scott Fenton, 13-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cgrrflx2d.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
cgrrflx2d.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) | ||
cgrrflx2d.3 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) | ||
Assertion | cgrrflx2d | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐵 , 𝐴 〉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgrrflx2d.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
2 | cgrrflx2d.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) | |
3 | cgrrflx2d.3 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) | |
4 | axcgrrflx | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐵 , 𝐴 〉 ) | |
5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐵 , 𝐴 〉 ) |