Database BASIC CATEGORY THEORY Categories Isomorphic objects cic  
				
		 
		
			
		 
		Theorem cic  
		Description:   Objects X  and Y  in a category are isomorphic provided that there
       is an isomorphism f : X --> Y  , see definition 3.15 of Adamek 
       p. 29.  (Contributed by AV , 4-Apr-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						cic.i   ⊢   I  =   Iso  ⁡  C        
					 
					
						cic.b   ⊢   B  =  Base  C      
					 
					
						cic.c    ⊢   φ   →   C  ∈  Cat         
					 
					
						cic.x    ⊢   φ   →   X  ∈  B         
					 
					
						cic.y    ⊢   φ   →   Y  ∈  B         
					 
				
					Assertion 
					cic    ⊢   φ   →   X   ≃  𝑐 ⁡  C   Y ↔   ∃  f   f  ∈  X  I  Y           
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							cic.i  ⊢   I  =   Iso  ⁡  C        
						
							2 
								
							 
							cic.b  ⊢   B  =  Base  C      
						
							3 
								
							 
							cic.c   ⊢   φ   →   C  ∈  Cat         
						
							4 
								
							 
							cic.x   ⊢   φ   →   X  ∈  B         
						
							5 
								
							 
							cic.y   ⊢   φ   →   Y  ∈  B         
						
							6 
								1  2  3  4  5 
							 
							brcic   ⊢   φ   →   X   ≃  𝑐 ⁡  C   Y ↔   X  I  Y ≠  ∅          
						
							7 
								
							 
							n0   ⊢   X  I  Y ≠  ∅    ↔   ∃  f   f  ∈  X  I  Y          
						
							8 
								6  7 
							 
							bitrdi   ⊢   φ   →   X   ≃  𝑐 ⁡  C   Y ↔   ∃  f   f  ∈  X  I  Y