Metamath Proof Explorer


Theorem cic

Description: Objects X and Y in a category are isomorphic provided that there is an isomorphism f : X --> Y , see definition 3.15 of Adamek p. 29. (Contributed by AV, 4-Apr-2020)

Ref Expression
Hypotheses cic.i I=IsoC
cic.b B=BaseC
cic.c φCCat
cic.x φXB
cic.y φYB
Assertion cic φX𝑐CYffXIY

Proof

Step Hyp Ref Expression
1 cic.i I=IsoC
2 cic.b B=BaseC
3 cic.c φCCat
4 cic.x φXB
5 cic.y φYB
6 1 2 3 4 5 brcic φX𝑐CYXIY
7 n0 XIYffXIY
8 6 7 bitrdi φX𝑐CYffXIY