Metamath Proof Explorer


Theorem cjexpd

Description: Complex conjugate of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1 φA
cjexpd.2 φN0
Assertion cjexpd φAN=AN

Proof

Step Hyp Ref Expression
1 recld.1 φA
2 cjexpd.2 φN0
3 cjexp AN0AN=AN
4 1 2 3 syl2anc φAN=AN