| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
fveq2d |
|
| 3 |
|
oveq2 |
|
| 4 |
2 3
|
eqeq12d |
|
| 5 |
|
oveq2 |
|
| 6 |
5
|
fveq2d |
|
| 7 |
|
oveq2 |
|
| 8 |
6 7
|
eqeq12d |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
fveq2d |
|
| 11 |
|
oveq2 |
|
| 12 |
10 11
|
eqeq12d |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
fveq2d |
|
| 15 |
|
oveq2 |
|
| 16 |
14 15
|
eqeq12d |
|
| 17 |
|
exp0 |
|
| 18 |
17
|
fveq2d |
|
| 19 |
|
cjcl |
|
| 20 |
|
exp0 |
|
| 21 |
|
1re |
|
| 22 |
|
cjre |
|
| 23 |
21 22
|
ax-mp |
|
| 24 |
20 23
|
eqtr4di |
|
| 25 |
19 24
|
syl |
|
| 26 |
18 25
|
eqtr4d |
|
| 27 |
|
expp1 |
|
| 28 |
27
|
fveq2d |
|
| 29 |
|
expcl |
|
| 30 |
|
simpl |
|
| 31 |
|
cjmul |
|
| 32 |
29 30 31
|
syl2anc |
|
| 33 |
28 32
|
eqtrd |
|
| 34 |
33
|
adantr |
|
| 35 |
|
oveq1 |
|
| 36 |
|
expp1 |
|
| 37 |
19 36
|
sylan |
|
| 38 |
37
|
eqcomd |
|
| 39 |
35 38
|
sylan9eqr |
|
| 40 |
34 39
|
eqtrd |
|
| 41 |
4 8 12 16 26 40
|
nn0indd |
|