| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( j = 0 -> ( A ^ j ) = ( A ^ 0 ) ) | 
						
							| 2 | 1 | fveq2d |  |-  ( j = 0 -> ( * ` ( A ^ j ) ) = ( * ` ( A ^ 0 ) ) ) | 
						
							| 3 |  | oveq2 |  |-  ( j = 0 -> ( ( * ` A ) ^ j ) = ( ( * ` A ) ^ 0 ) ) | 
						
							| 4 | 2 3 | eqeq12d |  |-  ( j = 0 -> ( ( * ` ( A ^ j ) ) = ( ( * ` A ) ^ j ) <-> ( * ` ( A ^ 0 ) ) = ( ( * ` A ) ^ 0 ) ) ) | 
						
							| 5 |  | oveq2 |  |-  ( j = k -> ( A ^ j ) = ( A ^ k ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( j = k -> ( * ` ( A ^ j ) ) = ( * ` ( A ^ k ) ) ) | 
						
							| 7 |  | oveq2 |  |-  ( j = k -> ( ( * ` A ) ^ j ) = ( ( * ` A ) ^ k ) ) | 
						
							| 8 | 6 7 | eqeq12d |  |-  ( j = k -> ( ( * ` ( A ^ j ) ) = ( ( * ` A ) ^ j ) <-> ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) ) ) | 
						
							| 9 |  | oveq2 |  |-  ( j = ( k + 1 ) -> ( A ^ j ) = ( A ^ ( k + 1 ) ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( j = ( k + 1 ) -> ( * ` ( A ^ j ) ) = ( * ` ( A ^ ( k + 1 ) ) ) ) | 
						
							| 11 |  | oveq2 |  |-  ( j = ( k + 1 ) -> ( ( * ` A ) ^ j ) = ( ( * ` A ) ^ ( k + 1 ) ) ) | 
						
							| 12 | 10 11 | eqeq12d |  |-  ( j = ( k + 1 ) -> ( ( * ` ( A ^ j ) ) = ( ( * ` A ) ^ j ) <-> ( * ` ( A ^ ( k + 1 ) ) ) = ( ( * ` A ) ^ ( k + 1 ) ) ) ) | 
						
							| 13 |  | oveq2 |  |-  ( j = N -> ( A ^ j ) = ( A ^ N ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( j = N -> ( * ` ( A ^ j ) ) = ( * ` ( A ^ N ) ) ) | 
						
							| 15 |  | oveq2 |  |-  ( j = N -> ( ( * ` A ) ^ j ) = ( ( * ` A ) ^ N ) ) | 
						
							| 16 | 14 15 | eqeq12d |  |-  ( j = N -> ( ( * ` ( A ^ j ) ) = ( ( * ` A ) ^ j ) <-> ( * ` ( A ^ N ) ) = ( ( * ` A ) ^ N ) ) ) | 
						
							| 17 |  | exp0 |  |-  ( A e. CC -> ( A ^ 0 ) = 1 ) | 
						
							| 18 | 17 | fveq2d |  |-  ( A e. CC -> ( * ` ( A ^ 0 ) ) = ( * ` 1 ) ) | 
						
							| 19 |  | cjcl |  |-  ( A e. CC -> ( * ` A ) e. CC ) | 
						
							| 20 |  | exp0 |  |-  ( ( * ` A ) e. CC -> ( ( * ` A ) ^ 0 ) = 1 ) | 
						
							| 21 |  | 1re |  |-  1 e. RR | 
						
							| 22 |  | cjre |  |-  ( 1 e. RR -> ( * ` 1 ) = 1 ) | 
						
							| 23 | 21 22 | ax-mp |  |-  ( * ` 1 ) = 1 | 
						
							| 24 | 20 23 | eqtr4di |  |-  ( ( * ` A ) e. CC -> ( ( * ` A ) ^ 0 ) = ( * ` 1 ) ) | 
						
							| 25 | 19 24 | syl |  |-  ( A e. CC -> ( ( * ` A ) ^ 0 ) = ( * ` 1 ) ) | 
						
							| 26 | 18 25 | eqtr4d |  |-  ( A e. CC -> ( * ` ( A ^ 0 ) ) = ( ( * ` A ) ^ 0 ) ) | 
						
							| 27 |  | expp1 |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( A ^ ( k + 1 ) ) ) = ( * ` ( ( A ^ k ) x. A ) ) ) | 
						
							| 29 |  | expcl |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) | 
						
							| 30 |  | simpl |  |-  ( ( A e. CC /\ k e. NN0 ) -> A e. CC ) | 
						
							| 31 |  | cjmul |  |-  ( ( ( A ^ k ) e. CC /\ A e. CC ) -> ( * ` ( ( A ^ k ) x. A ) ) = ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) ) | 
						
							| 32 | 29 30 31 | syl2anc |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ( A ^ k ) x. A ) ) = ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) ) | 
						
							| 33 | 28 32 | eqtrd |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( A ^ ( k + 1 ) ) ) = ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( A e. CC /\ k e. NN0 ) /\ ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) ) -> ( * ` ( A ^ ( k + 1 ) ) ) = ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) ) | 
						
							| 35 |  | oveq1 |  |-  ( ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) -> ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) = ( ( ( * ` A ) ^ k ) x. ( * ` A ) ) ) | 
						
							| 36 |  | expp1 |  |-  ( ( ( * ` A ) e. CC /\ k e. NN0 ) -> ( ( * ` A ) ^ ( k + 1 ) ) = ( ( ( * ` A ) ^ k ) x. ( * ` A ) ) ) | 
						
							| 37 | 19 36 | sylan |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( ( * ` A ) ^ ( k + 1 ) ) = ( ( ( * ` A ) ^ k ) x. ( * ` A ) ) ) | 
						
							| 38 | 37 | eqcomd |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( ( ( * ` A ) ^ k ) x. ( * ` A ) ) = ( ( * ` A ) ^ ( k + 1 ) ) ) | 
						
							| 39 | 35 38 | sylan9eqr |  |-  ( ( ( A e. CC /\ k e. NN0 ) /\ ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) ) -> ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) = ( ( * ` A ) ^ ( k + 1 ) ) ) | 
						
							| 40 | 34 39 | eqtrd |  |-  ( ( ( A e. CC /\ k e. NN0 ) /\ ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) ) -> ( * ` ( A ^ ( k + 1 ) ) ) = ( ( * ` A ) ^ ( k + 1 ) ) ) | 
						
							| 41 | 4 8 12 16 26 40 | nn0indd |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( * ` ( A ^ N ) ) = ( ( * ` A ) ^ N ) ) |