Metamath Proof Explorer


Theorem cldcss2

Description: Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015)

Ref Expression
Hypotheses cldcss.v V = Base W
cldcss.j J = TopOpen W
cldcss.l L = LSubSp W
cldcss.c C = ClSubSp W
Assertion cldcss2 W ℂHil C = L Clsd J

Proof

Step Hyp Ref Expression
1 cldcss.v V = Base W
2 cldcss.j J = TopOpen W
3 cldcss.l L = LSubSp W
4 cldcss.c C = ClSubSp W
5 1 2 3 4 cldcss W ℂHil x C x L x Clsd J
6 elin x L Clsd J x L x Clsd J
7 5 6 bitr4di W ℂHil x C x L Clsd J
8 7 eqrdv W ℂHil C = L Clsd J