Description: Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cldcss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| cldcss.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | ||
| cldcss.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | ||
| cldcss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
| Assertion | cldcss2 | ⊢ ( 𝑊 ∈ ℂHil → 𝐶 = ( 𝐿 ∩ ( Clsd ‘ 𝐽 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cldcss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | cldcss.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 3 | cldcss.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| 4 | cldcss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 5 | 1 2 3 4 | cldcss | ⊢ ( 𝑊 ∈ ℂHil → ( 𝑥 ∈ 𝐶 ↔ ( 𝑥 ∈ 𝐿 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) ) | 
| 6 | elin | ⊢ ( 𝑥 ∈ ( 𝐿 ∩ ( Clsd ‘ 𝐽 ) ) ↔ ( 𝑥 ∈ 𝐿 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) | |
| 7 | 5 6 | bitr4di | ⊢ ( 𝑊 ∈ ℂHil → ( 𝑥 ∈ 𝐶 ↔ 𝑥 ∈ ( 𝐿 ∩ ( Clsd ‘ 𝐽 ) ) ) ) | 
| 8 | 7 | eqrdv | ⊢ ( 𝑊 ∈ ℂHil → 𝐶 = ( 𝐿 ∩ ( Clsd ‘ 𝐽 ) ) ) |