Metamath Proof Explorer


Theorem cldcss2

Description: Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015)

Ref Expression
Hypotheses cldcss.v 𝑉 = ( Base ‘ 𝑊 )
cldcss.j 𝐽 = ( TopOpen ‘ 𝑊 )
cldcss.l 𝐿 = ( LSubSp ‘ 𝑊 )
cldcss.c 𝐶 = ( ClSubSp ‘ 𝑊 )
Assertion cldcss2 ( 𝑊 ∈ ℂHil → 𝐶 = ( 𝐿 ∩ ( Clsd ‘ 𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 cldcss.v 𝑉 = ( Base ‘ 𝑊 )
2 cldcss.j 𝐽 = ( TopOpen ‘ 𝑊 )
3 cldcss.l 𝐿 = ( LSubSp ‘ 𝑊 )
4 cldcss.c 𝐶 = ( ClSubSp ‘ 𝑊 )
5 1 2 3 4 cldcss ( 𝑊 ∈ ℂHil → ( 𝑥𝐶 ↔ ( 𝑥𝐿𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) )
6 elin ( 𝑥 ∈ ( 𝐿 ∩ ( Clsd ‘ 𝐽 ) ) ↔ ( 𝑥𝐿𝑥 ∈ ( Clsd ‘ 𝐽 ) ) )
7 5 6 bitr4di ( 𝑊 ∈ ℂHil → ( 𝑥𝐶𝑥 ∈ ( 𝐿 ∩ ( Clsd ‘ 𝐽 ) ) ) )
8 7 eqrdv ( 𝑊 ∈ ℂHil → 𝐶 = ( 𝐿 ∩ ( Clsd ‘ 𝐽 ) ) )