Description: Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cldcss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
cldcss.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | ||
cldcss.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | ||
cldcss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
Assertion | cldcss2 | ⊢ ( 𝑊 ∈ ℂHil → 𝐶 = ( 𝐿 ∩ ( Clsd ‘ 𝐽 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldcss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
2 | cldcss.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
3 | cldcss.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
4 | cldcss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
5 | 1 2 3 4 | cldcss | ⊢ ( 𝑊 ∈ ℂHil → ( 𝑥 ∈ 𝐶 ↔ ( 𝑥 ∈ 𝐿 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
6 | elin | ⊢ ( 𝑥 ∈ ( 𝐿 ∩ ( Clsd ‘ 𝐽 ) ) ↔ ( 𝑥 ∈ 𝐿 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) | |
7 | 5 6 | bitr4di | ⊢ ( 𝑊 ∈ ℂHil → ( 𝑥 ∈ 𝐶 ↔ 𝑥 ∈ ( 𝐿 ∩ ( Clsd ‘ 𝐽 ) ) ) ) |
8 | 7 | eqrdv | ⊢ ( 𝑊 ∈ ℂHil → 𝐶 = ( 𝐿 ∩ ( Clsd ‘ 𝐽 ) ) ) |