Metamath Proof Explorer


Theorem hlhil

Description: Corollary of the Projection Theorem: A subcomplex Hilbert space is a Hilbert space (in the algebraic sense, meaning that all algebraically closed subspaces have a projection decomposition). (Contributed by Mario Carneiro, 17-Oct-2015)

Ref Expression
Assertion hlhil ( 𝑊 ∈ ℂHil → 𝑊 ∈ Hil )

Proof

Step Hyp Ref Expression
1 hlphl ( 𝑊 ∈ ℂHil → 𝑊 ∈ PreHil )
2 eqid ( proj ‘ 𝑊 ) = ( proj ‘ 𝑊 )
3 eqid ( ClSubSp ‘ 𝑊 ) = ( ClSubSp ‘ 𝑊 )
4 2 3 pjcss ( 𝑊 ∈ PreHil → dom ( proj ‘ 𝑊 ) ⊆ ( ClSubSp ‘ 𝑊 ) )
5 1 4 syl ( 𝑊 ∈ ℂHil → dom ( proj ‘ 𝑊 ) ⊆ ( ClSubSp ‘ 𝑊 ) )
6 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
7 eqid ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝑊 )
8 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
9 6 7 8 3 cldcss2 ( 𝑊 ∈ ℂHil → ( ClSubSp ‘ 𝑊 ) = ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) )
10 elin ( 𝑥 ∈ ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ↔ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑥 ∈ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) )
11 7 8 2 pjth2 ( ( 𝑊 ∈ ℂHil ∧ 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑥 ∈ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) → 𝑥 ∈ dom ( proj ‘ 𝑊 ) )
12 11 3expib ( 𝑊 ∈ ℂHil → ( ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑥 ∈ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) → 𝑥 ∈ dom ( proj ‘ 𝑊 ) ) )
13 10 12 syl5bi ( 𝑊 ∈ ℂHil → ( 𝑥 ∈ ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) → 𝑥 ∈ dom ( proj ‘ 𝑊 ) ) )
14 13 ssrdv ( 𝑊 ∈ ℂHil → ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ⊆ dom ( proj ‘ 𝑊 ) )
15 9 14 eqsstrd ( 𝑊 ∈ ℂHil → ( ClSubSp ‘ 𝑊 ) ⊆ dom ( proj ‘ 𝑊 ) )
16 5 15 eqssd ( 𝑊 ∈ ℂHil → dom ( proj ‘ 𝑊 ) = ( ClSubSp ‘ 𝑊 ) )
17 2 3 ishil ( 𝑊 ∈ Hil ↔ ( 𝑊 ∈ PreHil ∧ dom ( proj ‘ 𝑊 ) = ( ClSubSp ‘ 𝑊 ) ) )
18 1 16 17 sylanbrc ( 𝑊 ∈ ℂHil → 𝑊 ∈ Hil )