Step |
Hyp |
Ref |
Expression |
1 |
|
hlphl |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ PreHil ) |
2 |
|
eqid |
⊢ ( proj ‘ 𝑊 ) = ( proj ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( ClSubSp ‘ 𝑊 ) = ( ClSubSp ‘ 𝑊 ) |
4 |
2 3
|
pjcss |
⊢ ( 𝑊 ∈ PreHil → dom ( proj ‘ 𝑊 ) ⊆ ( ClSubSp ‘ 𝑊 ) ) |
5 |
1 4
|
syl |
⊢ ( 𝑊 ∈ ℂHil → dom ( proj ‘ 𝑊 ) ⊆ ( ClSubSp ‘ 𝑊 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
9 |
6 7 8 3
|
cldcss2 |
⊢ ( 𝑊 ∈ ℂHil → ( ClSubSp ‘ 𝑊 ) = ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ) |
10 |
|
elin |
⊢ ( 𝑥 ∈ ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ↔ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑥 ∈ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ) |
11 |
7 8 2
|
pjth2 |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑥 ∈ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) → 𝑥 ∈ dom ( proj ‘ 𝑊 ) ) |
12 |
11
|
3expib |
⊢ ( 𝑊 ∈ ℂHil → ( ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑥 ∈ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) → 𝑥 ∈ dom ( proj ‘ 𝑊 ) ) ) |
13 |
10 12
|
syl5bi |
⊢ ( 𝑊 ∈ ℂHil → ( 𝑥 ∈ ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) → 𝑥 ∈ dom ( proj ‘ 𝑊 ) ) ) |
14 |
13
|
ssrdv |
⊢ ( 𝑊 ∈ ℂHil → ( ( LSubSp ‘ 𝑊 ) ∩ ( Clsd ‘ ( TopOpen ‘ 𝑊 ) ) ) ⊆ dom ( proj ‘ 𝑊 ) ) |
15 |
9 14
|
eqsstrd |
⊢ ( 𝑊 ∈ ℂHil → ( ClSubSp ‘ 𝑊 ) ⊆ dom ( proj ‘ 𝑊 ) ) |
16 |
5 15
|
eqssd |
⊢ ( 𝑊 ∈ ℂHil → dom ( proj ‘ 𝑊 ) = ( ClSubSp ‘ 𝑊 ) ) |
17 |
2 3
|
ishil |
⊢ ( 𝑊 ∈ Hil ↔ ( 𝑊 ∈ PreHil ∧ dom ( proj ‘ 𝑊 ) = ( ClSubSp ‘ 𝑊 ) ) ) |
18 |
1 16 17
|
sylanbrc |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ Hil ) |