| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishil.k | ⊢ 𝐾  =  ( proj ‘ 𝐻 ) | 
						
							| 2 |  | ishil.c | ⊢ 𝐶  =  ( ClSubSp ‘ 𝐻 ) | 
						
							| 3 |  | fveq2 | ⊢ ( ℎ  =  𝐻  →  ( proj ‘ ℎ )  =  ( proj ‘ 𝐻 ) ) | 
						
							| 4 | 3 1 | eqtr4di | ⊢ ( ℎ  =  𝐻  →  ( proj ‘ ℎ )  =  𝐾 ) | 
						
							| 5 | 4 | dmeqd | ⊢ ( ℎ  =  𝐻  →  dom  ( proj ‘ ℎ )  =  dom  𝐾 ) | 
						
							| 6 |  | fveq2 | ⊢ ( ℎ  =  𝐻  →  ( ClSubSp ‘ ℎ )  =  ( ClSubSp ‘ 𝐻 ) ) | 
						
							| 7 | 6 2 | eqtr4di | ⊢ ( ℎ  =  𝐻  →  ( ClSubSp ‘ ℎ )  =  𝐶 ) | 
						
							| 8 | 5 7 | eqeq12d | ⊢ ( ℎ  =  𝐻  →  ( dom  ( proj ‘ ℎ )  =  ( ClSubSp ‘ ℎ )  ↔  dom  𝐾  =  𝐶 ) ) | 
						
							| 9 |  | df-hil | ⊢ Hil  =  { ℎ  ∈  PreHil  ∣  dom  ( proj ‘ ℎ )  =  ( ClSubSp ‘ ℎ ) } | 
						
							| 10 | 8 9 | elrab2 | ⊢ ( 𝐻  ∈  Hil  ↔  ( 𝐻  ∈  PreHil  ∧  dom  𝐾  =  𝐶 ) ) |