Metamath Proof Explorer


Theorem ishil

Description: The predicate "is a Hilbert space" (over a *-division ring). A Hilbert space is a pre-Hilbert space such that all closed subspaces have a projection decomposition. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses ishil.k 𝐾 = ( proj ‘ 𝐻 )
ishil.c 𝐶 = ( ClSubSp ‘ 𝐻 )
Assertion ishil ( 𝐻 ∈ Hil ↔ ( 𝐻 ∈ PreHil ∧ dom 𝐾 = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ishil.k 𝐾 = ( proj ‘ 𝐻 )
2 ishil.c 𝐶 = ( ClSubSp ‘ 𝐻 )
3 fveq2 ( = 𝐻 → ( proj ‘ ) = ( proj ‘ 𝐻 ) )
4 3 1 eqtr4di ( = 𝐻 → ( proj ‘ ) = 𝐾 )
5 4 dmeqd ( = 𝐻 → dom ( proj ‘ ) = dom 𝐾 )
6 fveq2 ( = 𝐻 → ( ClSubSp ‘ ) = ( ClSubSp ‘ 𝐻 ) )
7 6 2 eqtr4di ( = 𝐻 → ( ClSubSp ‘ ) = 𝐶 )
8 5 7 eqeq12d ( = 𝐻 → ( dom ( proj ‘ ) = ( ClSubSp ‘ ) ↔ dom 𝐾 = 𝐶 ) )
9 df-hil Hil = { ∈ PreHil ∣ dom ( proj ‘ ) = ( ClSubSp ‘ ) }
10 8 9 elrab2 ( 𝐻 ∈ Hil ↔ ( 𝐻 ∈ PreHil ∧ dom 𝐾 = 𝐶 ) )