| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishil.k |
⊢ 𝐾 = ( proj ‘ 𝐻 ) |
| 2 |
|
ishil.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝐻 ) |
| 3 |
|
fveq2 |
⊢ ( ℎ = 𝐻 → ( proj ‘ ℎ ) = ( proj ‘ 𝐻 ) ) |
| 4 |
3 1
|
eqtr4di |
⊢ ( ℎ = 𝐻 → ( proj ‘ ℎ ) = 𝐾 ) |
| 5 |
4
|
dmeqd |
⊢ ( ℎ = 𝐻 → dom ( proj ‘ ℎ ) = dom 𝐾 ) |
| 6 |
|
fveq2 |
⊢ ( ℎ = 𝐻 → ( ClSubSp ‘ ℎ ) = ( ClSubSp ‘ 𝐻 ) ) |
| 7 |
6 2
|
eqtr4di |
⊢ ( ℎ = 𝐻 → ( ClSubSp ‘ ℎ ) = 𝐶 ) |
| 8 |
5 7
|
eqeq12d |
⊢ ( ℎ = 𝐻 → ( dom ( proj ‘ ℎ ) = ( ClSubSp ‘ ℎ ) ↔ dom 𝐾 = 𝐶 ) ) |
| 9 |
|
df-hil |
⊢ Hil = { ℎ ∈ PreHil ∣ dom ( proj ‘ ℎ ) = ( ClSubSp ‘ ℎ ) } |
| 10 |
8 9
|
elrab2 |
⊢ ( 𝐻 ∈ Hil ↔ ( 𝐻 ∈ PreHil ∧ dom 𝐾 = 𝐶 ) ) |