| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishil2.v |
⊢ 𝑉 = ( Base ‘ 𝐻 ) |
| 2 |
|
ishil2.s |
⊢ ⊕ = ( LSSum ‘ 𝐻 ) |
| 3 |
|
ishil2.o |
⊢ ⊥ = ( ocv ‘ 𝐻 ) |
| 4 |
|
ishil2.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝐻 ) |
| 5 |
|
eqid |
⊢ ( proj ‘ 𝐻 ) = ( proj ‘ 𝐻 ) |
| 6 |
5 4
|
ishil |
⊢ ( 𝐻 ∈ Hil ↔ ( 𝐻 ∈ PreHil ∧ dom ( proj ‘ 𝐻 ) = 𝐶 ) ) |
| 7 |
5 4
|
pjcss |
⊢ ( 𝐻 ∈ PreHil → dom ( proj ‘ 𝐻 ) ⊆ 𝐶 ) |
| 8 |
|
eqss |
⊢ ( dom ( proj ‘ 𝐻 ) = 𝐶 ↔ ( dom ( proj ‘ 𝐻 ) ⊆ 𝐶 ∧ 𝐶 ⊆ dom ( proj ‘ 𝐻 ) ) ) |
| 9 |
8
|
baib |
⊢ ( dom ( proj ‘ 𝐻 ) ⊆ 𝐶 → ( dom ( proj ‘ 𝐻 ) = 𝐶 ↔ 𝐶 ⊆ dom ( proj ‘ 𝐻 ) ) ) |
| 10 |
7 9
|
syl |
⊢ ( 𝐻 ∈ PreHil → ( dom ( proj ‘ 𝐻 ) = 𝐶 ↔ 𝐶 ⊆ dom ( proj ‘ 𝐻 ) ) ) |
| 11 |
|
dfss3 |
⊢ ( 𝐶 ⊆ dom ( proj ‘ 𝐻 ) ↔ ∀ 𝑠 ∈ 𝐶 𝑠 ∈ dom ( proj ‘ 𝐻 ) ) |
| 12 |
10 11
|
bitrdi |
⊢ ( 𝐻 ∈ PreHil → ( dom ( proj ‘ 𝐻 ) = 𝐶 ↔ ∀ 𝑠 ∈ 𝐶 𝑠 ∈ dom ( proj ‘ 𝐻 ) ) ) |
| 13 |
|
eqid |
⊢ ( LSubSp ‘ 𝐻 ) = ( LSubSp ‘ 𝐻 ) |
| 14 |
4 13
|
csslss |
⊢ ( ( 𝐻 ∈ PreHil ∧ 𝑠 ∈ 𝐶 ) → 𝑠 ∈ ( LSubSp ‘ 𝐻 ) ) |
| 15 |
1 13 3 2 5
|
pjdm2 |
⊢ ( 𝐻 ∈ PreHil → ( 𝑠 ∈ dom ( proj ‘ 𝐻 ) ↔ ( 𝑠 ∈ ( LSubSp ‘ 𝐻 ) ∧ ( 𝑠 ⊕ ( ⊥ ‘ 𝑠 ) ) = 𝑉 ) ) ) |
| 16 |
15
|
baibd |
⊢ ( ( 𝐻 ∈ PreHil ∧ 𝑠 ∈ ( LSubSp ‘ 𝐻 ) ) → ( 𝑠 ∈ dom ( proj ‘ 𝐻 ) ↔ ( 𝑠 ⊕ ( ⊥ ‘ 𝑠 ) ) = 𝑉 ) ) |
| 17 |
14 16
|
syldan |
⊢ ( ( 𝐻 ∈ PreHil ∧ 𝑠 ∈ 𝐶 ) → ( 𝑠 ∈ dom ( proj ‘ 𝐻 ) ↔ ( 𝑠 ⊕ ( ⊥ ‘ 𝑠 ) ) = 𝑉 ) ) |
| 18 |
17
|
ralbidva |
⊢ ( 𝐻 ∈ PreHil → ( ∀ 𝑠 ∈ 𝐶 𝑠 ∈ dom ( proj ‘ 𝐻 ) ↔ ∀ 𝑠 ∈ 𝐶 ( 𝑠 ⊕ ( ⊥ ‘ 𝑠 ) ) = 𝑉 ) ) |
| 19 |
12 18
|
bitrd |
⊢ ( 𝐻 ∈ PreHil → ( dom ( proj ‘ 𝐻 ) = 𝐶 ↔ ∀ 𝑠 ∈ 𝐶 ( 𝑠 ⊕ ( ⊥ ‘ 𝑠 ) ) = 𝑉 ) ) |
| 20 |
19
|
pm5.32i |
⊢ ( ( 𝐻 ∈ PreHil ∧ dom ( proj ‘ 𝐻 ) = 𝐶 ) ↔ ( 𝐻 ∈ PreHil ∧ ∀ 𝑠 ∈ 𝐶 ( 𝑠 ⊕ ( ⊥ ‘ 𝑠 ) ) = 𝑉 ) ) |
| 21 |
6 20
|
bitri |
⊢ ( 𝐻 ∈ Hil ↔ ( 𝐻 ∈ PreHil ∧ ∀ 𝑠 ∈ 𝐶 ( 𝑠 ⊕ ( ⊥ ‘ 𝑠 ) ) = 𝑉 ) ) |