Metamath Proof Explorer


Theorem ishil2

Description: The predicate "is a Hilbert space" (over a *-division ring). (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses ishil2.v 𝑉 = ( Base ‘ 𝐻 )
ishil2.s = ( LSSum ‘ 𝐻 )
ishil2.o = ( ocv ‘ 𝐻 )
ishil2.c 𝐶 = ( ClSubSp ‘ 𝐻 )
Assertion ishil2 ( 𝐻 ∈ Hil ↔ ( 𝐻 ∈ PreHil ∧ ∀ 𝑠𝐶 ( 𝑠 ( 𝑠 ) ) = 𝑉 ) )

Proof

Step Hyp Ref Expression
1 ishil2.v 𝑉 = ( Base ‘ 𝐻 )
2 ishil2.s = ( LSSum ‘ 𝐻 )
3 ishil2.o = ( ocv ‘ 𝐻 )
4 ishil2.c 𝐶 = ( ClSubSp ‘ 𝐻 )
5 eqid ( proj ‘ 𝐻 ) = ( proj ‘ 𝐻 )
6 5 4 ishil ( 𝐻 ∈ Hil ↔ ( 𝐻 ∈ PreHil ∧ dom ( proj ‘ 𝐻 ) = 𝐶 ) )
7 5 4 pjcss ( 𝐻 ∈ PreHil → dom ( proj ‘ 𝐻 ) ⊆ 𝐶 )
8 eqss ( dom ( proj ‘ 𝐻 ) = 𝐶 ↔ ( dom ( proj ‘ 𝐻 ) ⊆ 𝐶𝐶 ⊆ dom ( proj ‘ 𝐻 ) ) )
9 8 baib ( dom ( proj ‘ 𝐻 ) ⊆ 𝐶 → ( dom ( proj ‘ 𝐻 ) = 𝐶𝐶 ⊆ dom ( proj ‘ 𝐻 ) ) )
10 7 9 syl ( 𝐻 ∈ PreHil → ( dom ( proj ‘ 𝐻 ) = 𝐶𝐶 ⊆ dom ( proj ‘ 𝐻 ) ) )
11 dfss3 ( 𝐶 ⊆ dom ( proj ‘ 𝐻 ) ↔ ∀ 𝑠𝐶 𝑠 ∈ dom ( proj ‘ 𝐻 ) )
12 10 11 bitrdi ( 𝐻 ∈ PreHil → ( dom ( proj ‘ 𝐻 ) = 𝐶 ↔ ∀ 𝑠𝐶 𝑠 ∈ dom ( proj ‘ 𝐻 ) ) )
13 eqid ( LSubSp ‘ 𝐻 ) = ( LSubSp ‘ 𝐻 )
14 4 13 csslss ( ( 𝐻 ∈ PreHil ∧ 𝑠𝐶 ) → 𝑠 ∈ ( LSubSp ‘ 𝐻 ) )
15 1 13 3 2 5 pjdm2 ( 𝐻 ∈ PreHil → ( 𝑠 ∈ dom ( proj ‘ 𝐻 ) ↔ ( 𝑠 ∈ ( LSubSp ‘ 𝐻 ) ∧ ( 𝑠 ( 𝑠 ) ) = 𝑉 ) ) )
16 15 baibd ( ( 𝐻 ∈ PreHil ∧ 𝑠 ∈ ( LSubSp ‘ 𝐻 ) ) → ( 𝑠 ∈ dom ( proj ‘ 𝐻 ) ↔ ( 𝑠 ( 𝑠 ) ) = 𝑉 ) )
17 14 16 syldan ( ( 𝐻 ∈ PreHil ∧ 𝑠𝐶 ) → ( 𝑠 ∈ dom ( proj ‘ 𝐻 ) ↔ ( 𝑠 ( 𝑠 ) ) = 𝑉 ) )
18 17 ralbidva ( 𝐻 ∈ PreHil → ( ∀ 𝑠𝐶 𝑠 ∈ dom ( proj ‘ 𝐻 ) ↔ ∀ 𝑠𝐶 ( 𝑠 ( 𝑠 ) ) = 𝑉 ) )
19 12 18 bitrd ( 𝐻 ∈ PreHil → ( dom ( proj ‘ 𝐻 ) = 𝐶 ↔ ∀ 𝑠𝐶 ( 𝑠 ( 𝑠 ) ) = 𝑉 ) )
20 19 pm5.32i ( ( 𝐻 ∈ PreHil ∧ dom ( proj ‘ 𝐻 ) = 𝐶 ) ↔ ( 𝐻 ∈ PreHil ∧ ∀ 𝑠𝐶 ( 𝑠 ( 𝑠 ) ) = 𝑉 ) )
21 6 20 bitri ( 𝐻 ∈ Hil ↔ ( 𝐻 ∈ PreHil ∧ ∀ 𝑠𝐶 ( 𝑠 ( 𝑠 ) ) = 𝑉 ) )