Description: The predicate "is a Hilbert space" (over a *-division ring). (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 22-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ishil2.v | |
|
ishil2.s | |
||
ishil2.o | |
||
ishil2.c | |
||
Assertion | ishil2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishil2.v | |
|
2 | ishil2.s | |
|
3 | ishil2.o | |
|
4 | ishil2.c | |
|
5 | eqid | |
|
6 | 5 4 | ishil | |
7 | 5 4 | pjcss | |
8 | eqss | |
|
9 | 8 | baib | |
10 | 7 9 | syl | |
11 | dfss3 | |
|
12 | 10 11 | bitrdi | |
13 | eqid | |
|
14 | 4 13 | csslss | |
15 | 1 13 3 2 5 | pjdm2 | |
16 | 15 | baibd | |
17 | 14 16 | syldan | |
18 | 17 | ralbidva | |
19 | 12 18 | bitrd | |
20 | 19 | pm5.32i | |
21 | 6 20 | bitri | |