Metamath Proof Explorer


Theorem ishil2

Description: The predicate "is a Hilbert space" (over a *-division ring). (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses ishil2.v V=BaseH
ishil2.s ˙=LSSumH
ishil2.o ˙=ocvH
ishil2.c C=ClSubSpH
Assertion ishil2 HHilHPreHilsCs˙˙s=V

Proof

Step Hyp Ref Expression
1 ishil2.v V=BaseH
2 ishil2.s ˙=LSSumH
3 ishil2.o ˙=ocvH
4 ishil2.c C=ClSubSpH
5 eqid projH=projH
6 5 4 ishil HHilHPreHildomprojH=C
7 5 4 pjcss HPreHildomprojHC
8 eqss domprojH=CdomprojHCCdomprojH
9 8 baib domprojHCdomprojH=CCdomprojH
10 7 9 syl HPreHildomprojH=CCdomprojH
11 dfss3 CdomprojHsCsdomprojH
12 10 11 bitrdi HPreHildomprojH=CsCsdomprojH
13 eqid LSubSpH=LSubSpH
14 4 13 csslss HPreHilsCsLSubSpH
15 1 13 3 2 5 pjdm2 HPreHilsdomprojHsLSubSpHs˙˙s=V
16 15 baibd HPreHilsLSubSpHsdomprojHs˙˙s=V
17 14 16 syldan HPreHilsCsdomprojHs˙˙s=V
18 17 ralbidva HPreHilsCsdomprojHsCs˙˙s=V
19 12 18 bitrd HPreHildomprojH=CsCs˙˙s=V
20 19 pm5.32i HPreHildomprojH=CHPreHilsCs˙˙s=V
21 6 20 bitri HHilHPreHilsCs˙˙s=V