Metamath Proof Explorer


Theorem ishil2

Description: The predicate "is a Hilbert space" (over a *-division ring). (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses ishil2.v V = Base H
ishil2.s ˙ = LSSum H
ishil2.o ˙ = ocv H
ishil2.c C = ClSubSp H
Assertion ishil2 H Hil H PreHil s C s ˙ ˙ s = V

Proof

Step Hyp Ref Expression
1 ishil2.v V = Base H
2 ishil2.s ˙ = LSSum H
3 ishil2.o ˙ = ocv H
4 ishil2.c C = ClSubSp H
5 eqid proj H = proj H
6 5 4 ishil H Hil H PreHil dom proj H = C
7 5 4 pjcss H PreHil dom proj H C
8 eqss dom proj H = C dom proj H C C dom proj H
9 8 baib dom proj H C dom proj H = C C dom proj H
10 7 9 syl H PreHil dom proj H = C C dom proj H
11 dfss3 C dom proj H s C s dom proj H
12 10 11 bitrdi H PreHil dom proj H = C s C s dom proj H
13 eqid LSubSp H = LSubSp H
14 4 13 csslss H PreHil s C s LSubSp H
15 1 13 3 2 5 pjdm2 H PreHil s dom proj H s LSubSp H s ˙ ˙ s = V
16 15 baibd H PreHil s LSubSp H s dom proj H s ˙ ˙ s = V
17 14 16 syldan H PreHil s C s dom proj H s ˙ ˙ s = V
18 17 ralbidva H PreHil s C s dom proj H s C s ˙ ˙ s = V
19 12 18 bitrd H PreHil dom proj H = C s C s ˙ ˙ s = V
20 19 pm5.32i H PreHil dom proj H = C H PreHil s C s ˙ ˙ s = V
21 6 20 bitri H Hil H PreHil s C s ˙ ˙ s = V