Metamath Proof Explorer


Theorem pjcss

Description: A projection subspace is an (algebraically) closed subspace. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjcss.k K = proj W
pjcss.c C = ClSubSp W
Assertion pjcss W PreHil dom K C

Proof

Step Hyp Ref Expression
1 pjcss.k K = proj W
2 pjcss.c C = ClSubSp W
3 eqid Base W = Base W
4 eqid ocv W = ocv W
5 eqid LSSum W = LSSum W
6 simpl W PreHil x dom K W PreHil
7 eqid LSubSp W = LSubSp W
8 3 7 4 5 1 pjdm2 W PreHil x dom K x LSubSp W x LSSum W ocv W x = Base W
9 8 simprbda W PreHil x dom K x LSubSp W
10 3 7 lssss x LSubSp W x Base W
11 9 10 syl W PreHil x dom K x Base W
12 3 4 ocvss ocv W ocv W x Base W
13 8 simplbda W PreHil x dom K x LSSum W ocv W x = Base W
14 12 13 sseqtrrid W PreHil x dom K ocv W ocv W x x LSSum W ocv W x
15 2 3 4 5 6 11 14 lsmcss W PreHil x dom K x C
16 15 ex W PreHil x dom K x C
17 16 ssrdv W PreHil dom K C