| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjcss.k |
|- K = ( proj ` W ) |
| 2 |
|
pjcss.c |
|- C = ( ClSubSp ` W ) |
| 3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 4 |
|
eqid |
|- ( ocv ` W ) = ( ocv ` W ) |
| 5 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
| 6 |
|
simpl |
|- ( ( W e. PreHil /\ x e. dom K ) -> W e. PreHil ) |
| 7 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 8 |
3 7 4 5 1
|
pjdm2 |
|- ( W e. PreHil -> ( x e. dom K <-> ( x e. ( LSubSp ` W ) /\ ( x ( LSSum ` W ) ( ( ocv ` W ) ` x ) ) = ( Base ` W ) ) ) ) |
| 9 |
8
|
simprbda |
|- ( ( W e. PreHil /\ x e. dom K ) -> x e. ( LSubSp ` W ) ) |
| 10 |
3 7
|
lssss |
|- ( x e. ( LSubSp ` W ) -> x C_ ( Base ` W ) ) |
| 11 |
9 10
|
syl |
|- ( ( W e. PreHil /\ x e. dom K ) -> x C_ ( Base ` W ) ) |
| 12 |
3 4
|
ocvss |
|- ( ( ocv ` W ) ` ( ( ocv ` W ) ` x ) ) C_ ( Base ` W ) |
| 13 |
8
|
simplbda |
|- ( ( W e. PreHil /\ x e. dom K ) -> ( x ( LSSum ` W ) ( ( ocv ` W ) ` x ) ) = ( Base ` W ) ) |
| 14 |
12 13
|
sseqtrrid |
|- ( ( W e. PreHil /\ x e. dom K ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` x ) ) C_ ( x ( LSSum ` W ) ( ( ocv ` W ) ` x ) ) ) |
| 15 |
2 3 4 5 6 11 14
|
lsmcss |
|- ( ( W e. PreHil /\ x e. dom K ) -> x e. C ) |
| 16 |
15
|
ex |
|- ( W e. PreHil -> ( x e. dom K -> x e. C ) ) |
| 17 |
16
|
ssrdv |
|- ( W e. PreHil -> dom K C_ C ) |