| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjcss.k |  |-  K = ( proj ` W ) | 
						
							| 2 |  | pjcss.c |  |-  C = ( ClSubSp ` W ) | 
						
							| 3 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 4 |  | eqid |  |-  ( ocv ` W ) = ( ocv ` W ) | 
						
							| 5 |  | eqid |  |-  ( LSSum ` W ) = ( LSSum ` W ) | 
						
							| 6 |  | simpl |  |-  ( ( W e. PreHil /\ x e. dom K ) -> W e. PreHil ) | 
						
							| 7 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 8 | 3 7 4 5 1 | pjdm2 |  |-  ( W e. PreHil -> ( x e. dom K <-> ( x e. ( LSubSp ` W ) /\ ( x ( LSSum ` W ) ( ( ocv ` W ) ` x ) ) = ( Base ` W ) ) ) ) | 
						
							| 9 | 8 | simprbda |  |-  ( ( W e. PreHil /\ x e. dom K ) -> x e. ( LSubSp ` W ) ) | 
						
							| 10 | 3 7 | lssss |  |-  ( x e. ( LSubSp ` W ) -> x C_ ( Base ` W ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( W e. PreHil /\ x e. dom K ) -> x C_ ( Base ` W ) ) | 
						
							| 12 | 3 4 | ocvss |  |-  ( ( ocv ` W ) ` ( ( ocv ` W ) ` x ) ) C_ ( Base ` W ) | 
						
							| 13 | 8 | simplbda |  |-  ( ( W e. PreHil /\ x e. dom K ) -> ( x ( LSSum ` W ) ( ( ocv ` W ) ` x ) ) = ( Base ` W ) ) | 
						
							| 14 | 12 13 | sseqtrrid |  |-  ( ( W e. PreHil /\ x e. dom K ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` x ) ) C_ ( x ( LSSum ` W ) ( ( ocv ` W ) ` x ) ) ) | 
						
							| 15 | 2 3 4 5 6 11 14 | lsmcss |  |-  ( ( W e. PreHil /\ x e. dom K ) -> x e. C ) | 
						
							| 16 | 15 | ex |  |-  ( W e. PreHil -> ( x e. dom K -> x e. C ) ) | 
						
							| 17 | 16 | ssrdv |  |-  ( W e. PreHil -> dom K C_ C ) |