Metamath Proof Explorer


Theorem pjcss

Description: A projection subspace is an (algebraically) closed subspace. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjcss.k
|- K = ( proj ` W )
pjcss.c
|- C = ( ClSubSp ` W )
Assertion pjcss
|- ( W e. PreHil -> dom K C_ C )

Proof

Step Hyp Ref Expression
1 pjcss.k
 |-  K = ( proj ` W )
2 pjcss.c
 |-  C = ( ClSubSp ` W )
3 eqid
 |-  ( Base ` W ) = ( Base ` W )
4 eqid
 |-  ( ocv ` W ) = ( ocv ` W )
5 eqid
 |-  ( LSSum ` W ) = ( LSSum ` W )
6 simpl
 |-  ( ( W e. PreHil /\ x e. dom K ) -> W e. PreHil )
7 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
8 3 7 4 5 1 pjdm2
 |-  ( W e. PreHil -> ( x e. dom K <-> ( x e. ( LSubSp ` W ) /\ ( x ( LSSum ` W ) ( ( ocv ` W ) ` x ) ) = ( Base ` W ) ) ) )
9 8 simprbda
 |-  ( ( W e. PreHil /\ x e. dom K ) -> x e. ( LSubSp ` W ) )
10 3 7 lssss
 |-  ( x e. ( LSubSp ` W ) -> x C_ ( Base ` W ) )
11 9 10 syl
 |-  ( ( W e. PreHil /\ x e. dom K ) -> x C_ ( Base ` W ) )
12 3 4 ocvss
 |-  ( ( ocv ` W ) ` ( ( ocv ` W ) ` x ) ) C_ ( Base ` W )
13 8 simplbda
 |-  ( ( W e. PreHil /\ x e. dom K ) -> ( x ( LSSum ` W ) ( ( ocv ` W ) ` x ) ) = ( Base ` W ) )
14 12 13 sseqtrrid
 |-  ( ( W e. PreHil /\ x e. dom K ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` x ) ) C_ ( x ( LSSum ` W ) ( ( ocv ` W ) ` x ) ) )
15 2 3 4 5 6 11 14 lsmcss
 |-  ( ( W e. PreHil /\ x e. dom K ) -> x e. C )
16 15 ex
 |-  ( W e. PreHil -> ( x e. dom K -> x e. C ) )
17 16 ssrdv
 |-  ( W e. PreHil -> dom K C_ C )