Step |
Hyp |
Ref |
Expression |
1 |
|
pjcss.k |
⊢ 𝐾 = ( proj ‘ 𝑊 ) |
2 |
|
pjcss.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
6 |
|
simpl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → 𝑊 ∈ PreHil ) |
7 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
8 |
3 7 4 5 1
|
pjdm2 |
⊢ ( 𝑊 ∈ PreHil → ( 𝑥 ∈ dom 𝐾 ↔ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) = ( Base ‘ 𝑊 ) ) ) ) |
9 |
8
|
simprbda |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ) |
10 |
3 7
|
lssss |
⊢ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) → 𝑥 ⊆ ( Base ‘ 𝑊 ) ) |
11 |
9 10
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → 𝑥 ⊆ ( Base ‘ 𝑊 ) ) |
12 |
3 4
|
ocvss |
⊢ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) ⊆ ( Base ‘ 𝑊 ) |
13 |
8
|
simplbda |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) = ( Base ‘ 𝑊 ) ) |
14 |
12 13
|
sseqtrrid |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) ⊆ ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
15 |
2 3 4 5 6 11 14
|
lsmcss |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → 𝑥 ∈ 𝐶 ) |
16 |
15
|
ex |
⊢ ( 𝑊 ∈ PreHil → ( 𝑥 ∈ dom 𝐾 → 𝑥 ∈ 𝐶 ) ) |
17 |
16
|
ssrdv |
⊢ ( 𝑊 ∈ PreHil → dom 𝐾 ⊆ 𝐶 ) |