| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjcss.k | ⊢ 𝐾  =  ( proj ‘ 𝑊 ) | 
						
							| 2 |  | pjcss.c | ⊢ 𝐶  =  ( ClSubSp ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( ocv ‘ 𝑊 )  =  ( ocv ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( LSSum ‘ 𝑊 )  =  ( LSSum ‘ 𝑊 ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  𝑊  ∈  PreHil ) | 
						
							| 7 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 8 | 3 7 4 5 1 | pjdm2 | ⊢ ( 𝑊  ∈  PreHil  →  ( 𝑥  ∈  dom  𝐾  ↔  ( 𝑥  ∈  ( LSubSp ‘ 𝑊 )  ∧  ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) )  =  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 9 | 8 | simprbda | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  𝑥  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 10 | 3 7 | lssss | ⊢ ( 𝑥  ∈  ( LSubSp ‘ 𝑊 )  →  𝑥  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  𝑥  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 12 | 3 4 | ocvss | ⊢ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) )  ⊆  ( Base ‘ 𝑊 ) | 
						
							| 13 | 8 | simplbda | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 14 | 12 13 | sseqtrrid | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) )  ⊆  ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) ) | 
						
							| 15 | 2 3 4 5 6 11 14 | lsmcss | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  𝑥  ∈  𝐶 ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝑊  ∈  PreHil  →  ( 𝑥  ∈  dom  𝐾  →  𝑥  ∈  𝐶 ) ) | 
						
							| 17 | 16 | ssrdv | ⊢ ( 𝑊  ∈  PreHil  →  dom  𝐾  ⊆  𝐶 ) |