Metamath Proof Explorer


Theorem pjcss

Description: A projection subspace is an (algebraically) closed subspace. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjcss.k 𝐾 = ( proj ‘ 𝑊 )
pjcss.c 𝐶 = ( ClSubSp ‘ 𝑊 )
Assertion pjcss ( 𝑊 ∈ PreHil → dom 𝐾𝐶 )

Proof

Step Hyp Ref Expression
1 pjcss.k 𝐾 = ( proj ‘ 𝑊 )
2 pjcss.c 𝐶 = ( ClSubSp ‘ 𝑊 )
3 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
4 eqid ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 )
5 eqid ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 )
6 simpl ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → 𝑊 ∈ PreHil )
7 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
8 3 7 4 5 1 pjdm2 ( 𝑊 ∈ PreHil → ( 𝑥 ∈ dom 𝐾 ↔ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) = ( Base ‘ 𝑊 ) ) ) )
9 8 simprbda ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → 𝑥 ∈ ( LSubSp ‘ 𝑊 ) )
10 3 7 lssss ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) → 𝑥 ⊆ ( Base ‘ 𝑊 ) )
11 9 10 syl ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → 𝑥 ⊆ ( Base ‘ 𝑊 ) )
12 3 4 ocvss ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) ⊆ ( Base ‘ 𝑊 )
13 8 simplbda ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) = ( Base ‘ 𝑊 ) )
14 12 13 sseqtrrid ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) ⊆ ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) )
15 2 3 4 5 6 11 14 lsmcss ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → 𝑥𝐶 )
16 15 ex ( 𝑊 ∈ PreHil → ( 𝑥 ∈ dom 𝐾𝑥𝐶 ) )
17 16 ssrdv ( 𝑊 ∈ PreHil → dom 𝐾𝐶 )