Description: The orthocomplement of a subset is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ocvss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| Assertion | ocvss | ⊢ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ocvss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ocvss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 6 | 1 3 4 5 2 | elocv | ⊢ ( 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ↔ ( 𝑆 ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
| 7 | 6 | simp2bi | ⊢ ( 𝑥 ∈ ( ⊥ ‘ 𝑆 ) → 𝑥 ∈ 𝑉 ) | 
| 8 | 7 | ssriv | ⊢ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 |