| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocvss.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ocvss.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 3 | 1 2 | ocvss | ⊢ (  ⊥  ‘ 𝑆 )  ⊆  𝑉 | 
						
							| 4 | 3 | a1i | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  𝑆 )  →  (  ⊥  ‘ 𝑆 )  ⊆  𝑉 ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  𝑆  ⊆  𝑉 ) | 
						
							| 6 | 5 | sselda | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝑉 ) | 
						
							| 7 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 8 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 9 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 10 | 1 7 8 9 2 | ocvi | ⊢ ( ( 𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 11 | 10 | ancoms | ⊢ ( ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 ) )  →  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 12 | 11 | adantll | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 ) )  →  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 13 |  | simplll | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 ) )  →  𝑊  ∈  PreHil ) | 
						
							| 14 | 4 | sselda | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 ) )  →  𝑦  ∈  𝑉 ) | 
						
							| 15 | 6 | adantr | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 ) )  →  𝑥  ∈  𝑉 ) | 
						
							| 16 | 8 7 1 9 | iporthcom | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑦  ∈  𝑉  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 17 | 13 14 15 16 | syl3anc | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 ) )  →  ( ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 18 | 12 17 | mpbid | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 ) )  →  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 19 | 18 | ralrimiva | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  𝑆 )  →  ∀ 𝑦  ∈  (  ⊥  ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 20 | 1 7 8 9 2 | elocv | ⊢ ( 𝑥  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ↔  ( (  ⊥  ‘ 𝑆 )  ⊆  𝑉  ∧  𝑥  ∈  𝑉  ∧  ∀ 𝑦  ∈  (  ⊥  ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 21 | 4 6 19 20 | syl3anbrc | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 22 | 21 | ex | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  ( 𝑥  ∈  𝑆  →  𝑥  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) ) | 
						
							| 23 | 22 | ssrdv | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  𝑆  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) |