| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocvss.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ocvss.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 3 |  | ocvlss.l | ⊢ 𝐿  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 4 | 1 2 | ocvss | ⊢ (  ⊥  ‘ 𝑆 )  ⊆  𝑉 | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  (  ⊥  ‘ 𝑆 )  ⊆  𝑉 ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  𝑆  ⊆  𝑉 ) | 
						
							| 7 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  𝑊  ∈  LMod ) | 
						
							| 9 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 10 | 1 9 | lmod0vcl | ⊢ ( 𝑊  ∈  LMod  →  ( 0g ‘ 𝑊 )  ∈  𝑉 ) | 
						
							| 11 | 8 10 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  ( 0g ‘ 𝑊 )  ∈  𝑉 ) | 
						
							| 12 |  | simpll | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  𝑆 )  →  𝑊  ∈  PreHil ) | 
						
							| 13 | 6 | sselda | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝑉 ) | 
						
							| 14 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 15 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 16 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 17 | 14 15 1 16 9 | ip0l | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  𝑉 )  →  ( ( 0g ‘ 𝑊 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 18 | 12 13 17 | syl2anc | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  𝑥  ∈  𝑆 )  →  ( ( 0g ‘ 𝑊 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 19 | 18 | ralrimiva | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  ∀ 𝑥  ∈  𝑆 ( ( 0g ‘ 𝑊 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 20 | 1 15 14 16 2 | elocv | ⊢ ( ( 0g ‘ 𝑊 )  ∈  (  ⊥  ‘ 𝑆 )  ↔  ( 𝑆  ⊆  𝑉  ∧  ( 0g ‘ 𝑊 )  ∈  𝑉  ∧  ∀ 𝑥  ∈  𝑆 ( ( 0g ‘ 𝑊 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 21 | 6 11 19 20 | syl3anbrc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  ( 0g ‘ 𝑊 )  ∈  (  ⊥  ‘ 𝑆 ) ) | 
						
							| 22 | 21 | ne0d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  (  ⊥  ‘ 𝑆 )  ≠  ∅ ) | 
						
							| 23 | 6 | adantr | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  𝑆  ⊆  𝑉 ) | 
						
							| 24 | 8 | adantr | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  𝑊  ∈  LMod ) | 
						
							| 25 |  | simpr1 | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 26 |  | simpr2 | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  𝑦  ∈  (  ⊥  ‘ 𝑆 ) ) | 
						
							| 27 | 4 26 | sselid | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  𝑦  ∈  𝑉 ) | 
						
							| 28 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 29 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 30 | 1 14 28 29 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  𝑉 )  →  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑉 ) | 
						
							| 31 | 24 25 27 30 | syl3anc | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑉 ) | 
						
							| 32 |  | simpr3 | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) | 
						
							| 33 | 4 32 | sselid | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  𝑧  ∈  𝑉 ) | 
						
							| 34 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 35 | 1 34 | lmodvacl | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑉  ∧  𝑧  ∈  𝑉 )  →  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 )  ∈  𝑉 ) | 
						
							| 36 | 24 31 33 35 | syl3anc | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 )  ∈  𝑉 ) | 
						
							| 37 | 12 | adantlr | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  𝑊  ∈  PreHil ) | 
						
							| 38 | 31 | adantr | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑉 ) | 
						
							| 39 | 33 | adantr | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  𝑧  ∈  𝑉 ) | 
						
							| 40 | 13 | adantlr | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝑉 ) | 
						
							| 41 |  | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) )  =  ( +g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 42 | 14 15 1 34 41 | ipdir | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑉  ∧  𝑧  ∈  𝑉  ∧  𝑥  ∈  𝑉 ) )  →  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) | 
						
							| 43 | 37 38 39 40 42 | syl13anc | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) | 
						
							| 44 | 25 | adantr | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 45 | 27 | adantr | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  𝑦  ∈  𝑉 ) | 
						
							| 46 |  | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) )  =  ( .r ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 47 | 14 15 1 29 28 46 | ipass | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  𝑉  ∧  𝑥  ∈  𝑉 ) )  →  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) | 
						
							| 48 | 37 44 45 40 47 | syl13anc | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) | 
						
							| 49 | 1 15 14 16 2 | ocvi | ⊢ ( ( 𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 50 | 26 49 | sylan | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) )  =  ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 52 | 24 | adantr | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  𝑊  ∈  LMod ) | 
						
							| 53 | 14 | lmodring | ⊢ ( 𝑊  ∈  LMod  →  ( Scalar ‘ 𝑊 )  ∈  Ring ) | 
						
							| 54 | 52 53 | syl | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( Scalar ‘ 𝑊 )  ∈  Ring ) | 
						
							| 55 | 29 46 16 | ringrz | ⊢ ( ( ( Scalar ‘ 𝑊 )  ∈  Ring  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 56 | 54 44 55 | syl2anc | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑟 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 57 | 48 51 56 | 3eqtrd | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 58 | 1 15 14 16 2 | ocvi | ⊢ ( ( 𝑧  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 59 | 32 58 | sylan | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 60 | 57 59 | oveq12d | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) )  =  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 61 | 14 | lmodfgrp | ⊢ ( 𝑊  ∈  LMod  →  ( Scalar ‘ 𝑊 )  ∈  Grp ) | 
						
							| 62 | 29 16 | grpidcl | ⊢ ( ( Scalar ‘ 𝑊 )  ∈  Grp  →  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 63 | 29 41 16 | grplid | ⊢ ( ( ( Scalar ‘ 𝑊 )  ∈  Grp  ∧  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 64 | 62 63 | mpdan | ⊢ ( ( Scalar ‘ 𝑊 )  ∈  Grp  →  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 65 | 52 61 64 | 3syl | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 66 | 43 60 65 | 3eqtrd | ⊢ ( ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 67 | 66 | ralrimiva | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  ∀ 𝑥  ∈  𝑆 ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 68 | 1 15 14 16 2 | elocv | ⊢ ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ 𝑆 )  ↔  ( 𝑆  ⊆  𝑉  ∧  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 )  ∈  𝑉  ∧  ∀ 𝑥  ∈  𝑆 ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 69 | 23 36 67 68 | syl3anbrc | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  ∧  ( 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ 𝑆 ) ) | 
						
							| 70 | 69 | ralrimivvva | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  (  ⊥  ‘ 𝑆 ) ∀ 𝑧  ∈  (  ⊥  ‘ 𝑆 ) ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ 𝑆 ) ) | 
						
							| 71 | 14 29 1 34 28 3 | islss | ⊢ ( (  ⊥  ‘ 𝑆 )  ∈  𝐿  ↔  ( (  ⊥  ‘ 𝑆 )  ⊆  𝑉  ∧  (  ⊥  ‘ 𝑆 )  ≠  ∅  ∧  ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  (  ⊥  ‘ 𝑆 ) ∀ 𝑧  ∈  (  ⊥  ‘ 𝑆 ) ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 72 | 5 22 70 71 | syl3anbrc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  (  ⊥  ‘ 𝑆 )  ∈  𝐿 ) |