Step |
Hyp |
Ref |
Expression |
1 |
|
ocvfval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
ocvfval.i |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
ocvfval.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
ocvfval.z |
⊢ 0 = ( 0g ‘ 𝐹 ) |
5 |
|
ocvfval.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
6 |
|
elfvdm |
⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → 𝑆 ∈ dom ⊥ ) |
7 |
|
n0i |
⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → ¬ ( ⊥ ‘ 𝑆 ) = ∅ ) |
8 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( ocv ‘ 𝑊 ) = ∅ ) |
9 |
5 8
|
syl5eq |
⊢ ( ¬ 𝑊 ∈ V → ⊥ = ∅ ) |
10 |
9
|
fveq1d |
⊢ ( ¬ 𝑊 ∈ V → ( ⊥ ‘ 𝑆 ) = ( ∅ ‘ 𝑆 ) ) |
11 |
|
0fv |
⊢ ( ∅ ‘ 𝑆 ) = ∅ |
12 |
10 11
|
eqtrdi |
⊢ ( ¬ 𝑊 ∈ V → ( ⊥ ‘ 𝑆 ) = ∅ ) |
13 |
7 12
|
nsyl2 |
⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → 𝑊 ∈ V ) |
14 |
1 2 3 4 5
|
ocvfval |
⊢ ( 𝑊 ∈ V → ⊥ = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑠 ( 𝑦 , 𝑥 ) = 0 } ) ) |
15 |
13 14
|
syl |
⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → ⊥ = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑠 ( 𝑦 , 𝑥 ) = 0 } ) ) |
16 |
15
|
dmeqd |
⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → dom ⊥ = dom ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑠 ( 𝑦 , 𝑥 ) = 0 } ) ) |
17 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
18 |
17
|
rabex |
⊢ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑠 ( 𝑦 , 𝑥 ) = 0 } ∈ V |
19 |
|
eqid |
⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑠 ( 𝑦 , 𝑥 ) = 0 } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑠 ( 𝑦 , 𝑥 ) = 0 } ) |
20 |
18 19
|
dmmpti |
⊢ dom ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑠 ( 𝑦 , 𝑥 ) = 0 } ) = 𝒫 𝑉 |
21 |
16 20
|
eqtrdi |
⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → dom ⊥ = 𝒫 𝑉 ) |
22 |
6 21
|
eleqtrd |
⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → 𝑆 ∈ 𝒫 𝑉 ) |
23 |
22
|
elpwid |
⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) → 𝑆 ⊆ 𝑉 ) |
24 |
1 2 3 4 5
|
ocvval |
⊢ ( 𝑆 ⊆ 𝑉 → ( ⊥ ‘ 𝑆 ) = { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑦 , 𝑥 ) = 0 } ) |
25 |
24
|
eleq2d |
⊢ ( 𝑆 ⊆ 𝑉 → ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) ↔ 𝐴 ∈ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑦 , 𝑥 ) = 0 } ) ) |
26 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 , 𝑥 ) = ( 𝐴 , 𝑥 ) ) |
27 |
26
|
eqeq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 , 𝑥 ) = 0 ↔ ( 𝐴 , 𝑥 ) = 0 ) ) |
28 |
27
|
ralbidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝑆 ( 𝑦 , 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ) |
29 |
28
|
elrab |
⊢ ( 𝐴 ∈ { 𝑦 ∈ 𝑉 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑦 , 𝑥 ) = 0 } ↔ ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ) |
30 |
25 29
|
bitrdi |
⊢ ( 𝑆 ⊆ 𝑉 → ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) ↔ ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ) ) |
31 |
23 30
|
biadanii |
⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) ↔ ( 𝑆 ⊆ 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ) ) |
32 |
|
3anass |
⊢ ( ( 𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ↔ ( 𝑆 ⊆ 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ) ) |
33 |
31 32
|
bitr4i |
⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝑆 ) ↔ ( 𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐴 , 𝑥 ) = 0 ) ) |