Metamath Proof Explorer


Theorem ocvi

Description: Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ocvfval.v 𝑉 = ( Base ‘ 𝑊 )
ocvfval.i , = ( ·𝑖𝑊 )
ocvfval.f 𝐹 = ( Scalar ‘ 𝑊 )
ocvfval.z 0 = ( 0g𝐹 )
ocvfval.o = ( ocv ‘ 𝑊 )
Assertion ocvi ( ( 𝐴 ∈ ( 𝑆 ) ∧ 𝐵𝑆 ) → ( 𝐴 , 𝐵 ) = 0 )

Proof

Step Hyp Ref Expression
1 ocvfval.v 𝑉 = ( Base ‘ 𝑊 )
2 ocvfval.i , = ( ·𝑖𝑊 )
3 ocvfval.f 𝐹 = ( Scalar ‘ 𝑊 )
4 ocvfval.z 0 = ( 0g𝐹 )
5 ocvfval.o = ( ocv ‘ 𝑊 )
6 1 2 3 4 5 elocv ( 𝐴 ∈ ( 𝑆 ) ↔ ( 𝑆𝑉𝐴𝑉 ∧ ∀ 𝑥𝑆 ( 𝐴 , 𝑥 ) = 0 ) )
7 6 simp3bi ( 𝐴 ∈ ( 𝑆 ) → ∀ 𝑥𝑆 ( 𝐴 , 𝑥 ) = 0 )
8 oveq2 ( 𝑥 = 𝐵 → ( 𝐴 , 𝑥 ) = ( 𝐴 , 𝐵 ) )
9 8 eqeq1d ( 𝑥 = 𝐵 → ( ( 𝐴 , 𝑥 ) = 0 ↔ ( 𝐴 , 𝐵 ) = 0 ) )
10 9 rspccva ( ( ∀ 𝑥𝑆 ( 𝐴 , 𝑥 ) = 0𝐵𝑆 ) → ( 𝐴 , 𝐵 ) = 0 )
11 7 10 sylan ( ( 𝐴 ∈ ( 𝑆 ) ∧ 𝐵𝑆 ) → ( 𝐴 , 𝐵 ) = 0 )