| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocv2ss.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 2 |  | sstr2 | ⊢ ( 𝑇  ⊆  𝑆  →  ( 𝑆  ⊆  ( Base ‘ 𝑊 )  →  𝑇  ⊆  ( Base ‘ 𝑊 ) ) ) | 
						
							| 3 |  | idd | ⊢ ( 𝑇  ⊆  𝑆  →  ( 𝑥  ∈  ( Base ‘ 𝑊 )  →  𝑥  ∈  ( Base ‘ 𝑊 ) ) ) | 
						
							| 4 |  | ssralv | ⊢ ( 𝑇  ⊆  𝑆  →  ( ∀ 𝑦  ∈  𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  →  ∀ 𝑦  ∈  𝑇 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 5 | 2 3 4 | 3anim123d | ⊢ ( 𝑇  ⊆  𝑆  →  ( ( 𝑆  ⊆  ( Base ‘ 𝑊 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( 𝑇  ⊆  ( Base ‘ 𝑊 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝑇 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 7 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 8 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 9 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 10 | 6 7 8 9 1 | elocv | ⊢ ( 𝑥  ∈  (  ⊥  ‘ 𝑆 )  ↔  ( 𝑆  ⊆  ( Base ‘ 𝑊 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 11 | 6 7 8 9 1 | elocv | ⊢ ( 𝑥  ∈  (  ⊥  ‘ 𝑇 )  ↔  ( 𝑇  ⊆  ( Base ‘ 𝑊 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝑇 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 12 | 5 10 11 | 3imtr4g | ⊢ ( 𝑇  ⊆  𝑆  →  ( 𝑥  ∈  (  ⊥  ‘ 𝑆 )  →  𝑥  ∈  (  ⊥  ‘ 𝑇 ) ) ) | 
						
							| 13 | 12 | ssrdv | ⊢ ( 𝑇  ⊆  𝑆  →  (  ⊥  ‘ 𝑆 )  ⊆  (  ⊥  ‘ 𝑇 ) ) |