| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ocv2ss.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
| 2 |
|
ocvin.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
ocvin.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 8 |
4 5 6 7 1
|
ocvi |
⊢ ( ( 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 9 |
8
|
ancoms |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 11 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) ) → 𝑊 ∈ PreHil ) |
| 12 |
4 2
|
lssel |
⊢ ( ( 𝑆 ∈ 𝐿 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 13 |
12
|
ad2ant2lr |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 14 |
6 5 4 7 3
|
ipeq0 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 = 0 ) ) |
| 15 |
11 13 14
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 = 0 ) ) |
| 16 |
10 15
|
mpbid |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) ) → 𝑥 = 0 ) |
| 17 |
16
|
ex |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) → ( ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) → 𝑥 = 0 ) ) |
| 18 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ↔ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘ 𝑆 ) ) ) |
| 19 |
|
velsn |
⊢ ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) |
| 20 |
17 18 19
|
3imtr4g |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) → ( 𝑥 ∈ ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) → 𝑥 ∈ { 0 } ) ) |
| 21 |
20
|
ssrdv |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) → ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ⊆ { 0 } ) |
| 22 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 23 |
4 2
|
lssss |
⊢ ( 𝑆 ∈ 𝐿 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 24 |
4 1 2
|
ocvlss |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ ( Base ‘ 𝑊 ) ) → ( ⊥ ‘ 𝑆 ) ∈ 𝐿 ) |
| 25 |
23 24
|
sylan2 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) → ( ⊥ ‘ 𝑆 ) ∈ 𝐿 ) |
| 26 |
2
|
lssincl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑆 ∈ 𝐿 ∧ ( ⊥ ‘ 𝑆 ) ∈ 𝐿 ) → ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ∈ 𝐿 ) |
| 27 |
22 26
|
syl3an1 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ∧ ( ⊥ ‘ 𝑆 ) ∈ 𝐿 ) → ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ∈ 𝐿 ) |
| 28 |
25 27
|
mpd3an3 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) → ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ∈ 𝐿 ) |
| 29 |
3 2
|
lss0ss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ∈ 𝐿 ) → { 0 } ⊆ ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ) |
| 30 |
22 28 29
|
syl2an2r |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) → { 0 } ⊆ ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) ) |
| 31 |
21 30
|
eqssd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ) → ( 𝑆 ∩ ( ⊥ ‘ 𝑆 ) ) = { 0 } ) |