| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocv2ss.o |  |-  ._|_ = ( ocv ` W ) | 
						
							| 2 |  | ocvin.l |  |-  L = ( LSubSp ` W ) | 
						
							| 3 |  | ocvin.z |  |-  .0. = ( 0g ` W ) | 
						
							| 4 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 5 |  | eqid |  |-  ( .i ` W ) = ( .i ` W ) | 
						
							| 6 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 7 |  | eqid |  |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) | 
						
							| 8 | 4 5 6 7 1 | ocvi |  |-  ( ( x e. ( ._|_ ` S ) /\ x e. S ) -> ( x ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 9 | 8 | ancoms |  |-  ( ( x e. S /\ x e. ( ._|_ ` S ) ) -> ( x ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( W e. PreHil /\ S e. L ) /\ ( x e. S /\ x e. ( ._|_ ` S ) ) ) -> ( x ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 11 |  | simpll |  |-  ( ( ( W e. PreHil /\ S e. L ) /\ ( x e. S /\ x e. ( ._|_ ` S ) ) ) -> W e. PreHil ) | 
						
							| 12 | 4 2 | lssel |  |-  ( ( S e. L /\ x e. S ) -> x e. ( Base ` W ) ) | 
						
							| 13 | 12 | ad2ant2lr |  |-  ( ( ( W e. PreHil /\ S e. L ) /\ ( x e. S /\ x e. ( ._|_ ` S ) ) ) -> x e. ( Base ` W ) ) | 
						
							| 14 | 6 5 4 7 3 | ipeq0 |  |-  ( ( W e. PreHil /\ x e. ( Base ` W ) ) -> ( ( x ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) <-> x = .0. ) ) | 
						
							| 15 | 11 13 14 | syl2anc |  |-  ( ( ( W e. PreHil /\ S e. L ) /\ ( x e. S /\ x e. ( ._|_ ` S ) ) ) -> ( ( x ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) <-> x = .0. ) ) | 
						
							| 16 | 10 15 | mpbid |  |-  ( ( ( W e. PreHil /\ S e. L ) /\ ( x e. S /\ x e. ( ._|_ ` S ) ) ) -> x = .0. ) | 
						
							| 17 | 16 | ex |  |-  ( ( W e. PreHil /\ S e. L ) -> ( ( x e. S /\ x e. ( ._|_ ` S ) ) -> x = .0. ) ) | 
						
							| 18 |  | elin |  |-  ( x e. ( S i^i ( ._|_ ` S ) ) <-> ( x e. S /\ x e. ( ._|_ ` S ) ) ) | 
						
							| 19 |  | velsn |  |-  ( x e. { .0. } <-> x = .0. ) | 
						
							| 20 | 17 18 19 | 3imtr4g |  |-  ( ( W e. PreHil /\ S e. L ) -> ( x e. ( S i^i ( ._|_ ` S ) ) -> x e. { .0. } ) ) | 
						
							| 21 | 20 | ssrdv |  |-  ( ( W e. PreHil /\ S e. L ) -> ( S i^i ( ._|_ ` S ) ) C_ { .0. } ) | 
						
							| 22 |  | phllmod |  |-  ( W e. PreHil -> W e. LMod ) | 
						
							| 23 | 4 2 | lssss |  |-  ( S e. L -> S C_ ( Base ` W ) ) | 
						
							| 24 | 4 1 2 | ocvlss |  |-  ( ( W e. PreHil /\ S C_ ( Base ` W ) ) -> ( ._|_ ` S ) e. L ) | 
						
							| 25 | 23 24 | sylan2 |  |-  ( ( W e. PreHil /\ S e. L ) -> ( ._|_ ` S ) e. L ) | 
						
							| 26 | 2 | lssincl |  |-  ( ( W e. LMod /\ S e. L /\ ( ._|_ ` S ) e. L ) -> ( S i^i ( ._|_ ` S ) ) e. L ) | 
						
							| 27 | 22 26 | syl3an1 |  |-  ( ( W e. PreHil /\ S e. L /\ ( ._|_ ` S ) e. L ) -> ( S i^i ( ._|_ ` S ) ) e. L ) | 
						
							| 28 | 25 27 | mpd3an3 |  |-  ( ( W e. PreHil /\ S e. L ) -> ( S i^i ( ._|_ ` S ) ) e. L ) | 
						
							| 29 | 3 2 | lss0ss |  |-  ( ( W e. LMod /\ ( S i^i ( ._|_ ` S ) ) e. L ) -> { .0. } C_ ( S i^i ( ._|_ ` S ) ) ) | 
						
							| 30 | 22 28 29 | syl2an2r |  |-  ( ( W e. PreHil /\ S e. L ) -> { .0. } C_ ( S i^i ( ._|_ ` S ) ) ) | 
						
							| 31 | 21 30 | eqssd |  |-  ( ( W e. PreHil /\ S e. L ) -> ( S i^i ( ._|_ ` S ) ) = { .0. } ) |