| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ocvlsp.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
ocvlsp.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
| 3 |
1 2
|
ocvocv |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ⊆ 𝑉 ) → 𝑇 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) |
| 4 |
3
|
3adant2 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉 ) → 𝑇 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) |
| 5 |
2
|
ocv2ss |
⊢ ( 𝑆 ⊆ ( ⊥ ‘ 𝑇 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) |
| 6 |
|
sstr2 |
⊢ ( 𝑇 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ⊆ ( ⊥ ‘ 𝑆 ) → 𝑇 ⊆ ( ⊥ ‘ 𝑆 ) ) ) |
| 7 |
4 5 6
|
syl2im |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉 ) → ( 𝑆 ⊆ ( ⊥ ‘ 𝑇 ) → 𝑇 ⊆ ( ⊥ ‘ 𝑆 ) ) ) |
| 8 |
1 2
|
ocvocv |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 9 |
8
|
3adant3 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 10 |
2
|
ocv2ss |
⊢ ( 𝑇 ⊆ ( ⊥ ‘ 𝑆 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ 𝑇 ) ) |
| 11 |
|
sstr2 |
⊢ ( 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ 𝑇 ) → 𝑆 ⊆ ( ⊥ ‘ 𝑇 ) ) ) |
| 12 |
9 10 11
|
syl2im |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉 ) → ( 𝑇 ⊆ ( ⊥ ‘ 𝑆 ) → 𝑆 ⊆ ( ⊥ ‘ 𝑇 ) ) ) |
| 13 |
7 12
|
impbid |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉 ) → ( 𝑆 ⊆ ( ⊥ ‘ 𝑇 ) ↔ 𝑇 ⊆ ( ⊥ ‘ 𝑆 ) ) ) |