| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocvlsp.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ocvlsp.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 3 | 1 2 | ocvocv | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ⊆  𝑉 )  →  𝑇  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) ) ) | 
						
							| 4 | 3 | 3adant2 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉  ∧  𝑇  ⊆  𝑉 )  →  𝑇  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) ) ) | 
						
							| 5 | 2 | ocv2ss | ⊢ ( 𝑆  ⊆  (  ⊥  ‘ 𝑇 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) )  ⊆  (  ⊥  ‘ 𝑆 ) ) | 
						
							| 6 |  | sstr2 | ⊢ ( 𝑇  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) )  →  ( (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) )  ⊆  (  ⊥  ‘ 𝑆 )  →  𝑇  ⊆  (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 7 | 4 5 6 | syl2im | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉  ∧  𝑇  ⊆  𝑉 )  →  ( 𝑆  ⊆  (  ⊥  ‘ 𝑇 )  →  𝑇  ⊆  (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 8 | 1 2 | ocvocv | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  𝑆  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 9 | 8 | 3adant3 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉  ∧  𝑇  ⊆  𝑉 )  →  𝑆  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 10 | 2 | ocv2ss | ⊢ ( 𝑇  ⊆  (  ⊥  ‘ 𝑆 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ⊆  (  ⊥  ‘ 𝑇 ) ) | 
						
							| 11 |  | sstr2 | ⊢ ( 𝑆  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  →  ( (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ⊆  (  ⊥  ‘ 𝑇 )  →  𝑆  ⊆  (  ⊥  ‘ 𝑇 ) ) ) | 
						
							| 12 | 9 10 11 | syl2im | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉  ∧  𝑇  ⊆  𝑉 )  →  ( 𝑇  ⊆  (  ⊥  ‘ 𝑆 )  →  𝑆  ⊆  (  ⊥  ‘ 𝑇 ) ) ) | 
						
							| 13 | 7 12 | impbid | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉  ∧  𝑇  ⊆  𝑉 )  →  ( 𝑆  ⊆  (  ⊥  ‘ 𝑇 )  ↔  𝑇  ⊆  (  ⊥  ‘ 𝑆 ) ) ) |