| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocvlsp.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ocvlsp.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 3 |  | ocvlsp.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 5 | 1 3 | lspssid | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑆  ⊆  𝑉 )  →  𝑆  ⊆  ( 𝑁 ‘ 𝑆 ) ) | 
						
							| 6 | 4 5 | sylan | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  𝑆  ⊆  ( 𝑁 ‘ 𝑆 ) ) | 
						
							| 7 | 2 | ocv2ss | ⊢ ( 𝑆  ⊆  ( 𝑁 ‘ 𝑆 )  →  (  ⊥  ‘ ( 𝑁 ‘ 𝑆 ) )  ⊆  (  ⊥  ‘ 𝑆 ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  (  ⊥  ‘ ( 𝑁 ‘ 𝑆 ) )  ⊆  (  ⊥  ‘ 𝑆 ) ) | 
						
							| 9 | 1 2 | ocvss | ⊢ (  ⊥  ‘ 𝑆 )  ⊆  𝑉 | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  (  ⊥  ‘ 𝑆 )  ⊆  𝑉 ) | 
						
							| 11 | 1 2 | ocvocv | ⊢ ( ( 𝑊  ∈  PreHil  ∧  (  ⊥  ‘ 𝑆 )  ⊆  𝑉 )  →  (  ⊥  ‘ 𝑆 )  ⊆  (  ⊥  ‘ (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) ) | 
						
							| 12 | 10 11 | syldan | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  (  ⊥  ‘ 𝑆 )  ⊆  (  ⊥  ‘ (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) ) | 
						
							| 13 | 4 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  𝑊  ∈  LMod ) | 
						
							| 14 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 15 | 1 2 14 | ocvlss | ⊢ ( ( 𝑊  ∈  PreHil  ∧  (  ⊥  ‘ 𝑆 )  ⊆  𝑉 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 16 | 10 15 | syldan | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 17 | 1 2 | ocvocv | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  𝑆  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 18 | 14 3 | lspssp | ⊢ ( ( 𝑊  ∈  LMod  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ∈  ( LSubSp ‘ 𝑊 )  ∧  𝑆  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( 𝑁 ‘ 𝑆 )  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 19 | 13 16 17 18 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  ( 𝑁 ‘ 𝑆 )  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 20 | 2 | ocv2ss | ⊢ ( ( 𝑁 ‘ 𝑆 )  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  →  (  ⊥  ‘ (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  ⊆  (  ⊥  ‘ ( 𝑁 ‘ 𝑆 ) ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  (  ⊥  ‘ (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  ⊆  (  ⊥  ‘ ( 𝑁 ‘ 𝑆 ) ) ) | 
						
							| 22 | 12 21 | sstrd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  (  ⊥  ‘ 𝑆 )  ⊆  (  ⊥  ‘ ( 𝑁 ‘ 𝑆 ) ) ) | 
						
							| 23 | 8 22 | eqssd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  (  ⊥  ‘ ( 𝑁 ‘ 𝑆 ) )  =  (  ⊥  ‘ 𝑆 ) ) |