| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocvz.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ocvz.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 3 |  | 0ss | ⊢ ∅  ⊆  𝑉 | 
						
							| 4 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 7 | 1 4 5 6 2 | ocvval | ⊢ ( ∅  ⊆  𝑉  →  (  ⊥  ‘ ∅ )  =  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) | 
						
							| 8 | 3 7 | ax-mp | ⊢ (  ⊥  ‘ ∅ )  =  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } | 
						
							| 9 |  | ral0 | ⊢ ∀ 𝑦  ∈  ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 10 | 9 | rgenw | ⊢ ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 11 |  | rabid2 | ⊢ ( 𝑉  =  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) }  ↔  ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 12 | 10 11 | mpbir | ⊢ 𝑉  =  { 𝑥  ∈  𝑉  ∣  ∀ 𝑦  ∈  ∅ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } | 
						
							| 13 | 8 12 | eqtr4i | ⊢ (  ⊥  ‘ ∅ )  =  𝑉 |