Metamath Proof Explorer


Theorem ocvz

Description: The orthocomplement of the zero subspace. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses ocvz.v 𝑉 = ( Base ‘ 𝑊 )
ocvz.o = ( ocv ‘ 𝑊 )
ocvz.z 0 = ( 0g𝑊 )
Assertion ocvz ( 𝑊 ∈ PreHil → ( ‘ { 0 } ) = 𝑉 )

Proof

Step Hyp Ref Expression
1 ocvz.v 𝑉 = ( Base ‘ 𝑊 )
2 ocvz.o = ( ocv ‘ 𝑊 )
3 ocvz.z 0 = ( 0g𝑊 )
4 phllmod ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod )
5 eqid ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 )
6 3 5 lsp0 ( 𝑊 ∈ LMod → ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) = { 0 } )
7 4 6 syl ( 𝑊 ∈ PreHil → ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) = { 0 } )
8 7 fveq2d ( 𝑊 ∈ PreHil → ( ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = ( ‘ { 0 } ) )
9 0ss ∅ ⊆ 𝑉
10 1 2 5 ocvlsp ( ( 𝑊 ∈ PreHil ∧ ∅ ⊆ 𝑉 ) → ( ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = ( ‘ ∅ ) )
11 9 10 mpan2 ( 𝑊 ∈ PreHil → ( ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = ( ‘ ∅ ) )
12 1 2 ocv0 ( ‘ ∅ ) = 𝑉
13 11 12 eqtrdi ( 𝑊 ∈ PreHil → ( ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = 𝑉 )
14 8 13 eqtr3d ( 𝑊 ∈ PreHil → ( ‘ { 0 } ) = 𝑉 )