| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocvz.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ocvz.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 3 |  | ocvz.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 4 | 1 2 | ocvss | ⊢ (  ⊥  ‘ 𝑉 )  ⊆  𝑉 | 
						
							| 5 |  | sseqin2 | ⊢ ( (  ⊥  ‘ 𝑉 )  ⊆  𝑉  ↔  ( 𝑉  ∩  (  ⊥  ‘ 𝑉 ) )  =  (  ⊥  ‘ 𝑉 ) ) | 
						
							| 6 | 4 5 | mpbi | ⊢ ( 𝑉  ∩  (  ⊥  ‘ 𝑉 ) )  =  (  ⊥  ‘ 𝑉 ) | 
						
							| 7 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 8 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 9 | 1 8 | lss1 | ⊢ ( 𝑊  ∈  LMod  →  𝑉  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 10 | 7 9 | syl | ⊢ ( 𝑊  ∈  PreHil  →  𝑉  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 11 | 2 8 3 | ocvin | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑉  ∈  ( LSubSp ‘ 𝑊 ) )  →  ( 𝑉  ∩  (  ⊥  ‘ 𝑉 ) )  =  {  0  } ) | 
						
							| 12 | 10 11 | mpdan | ⊢ ( 𝑊  ∈  PreHil  →  ( 𝑉  ∩  (  ⊥  ‘ 𝑉 ) )  =  {  0  } ) | 
						
							| 13 | 6 12 | eqtr3id | ⊢ ( 𝑊  ∈  PreHil  →  (  ⊥  ‘ 𝑉 )  =  {  0  } ) |