Step |
Hyp |
Ref |
Expression |
1 |
|
inocv.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
2 |
|
unss |
⊢ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐵 ⊆ ( Base ‘ 𝑊 ) ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ) |
3 |
2
|
bicomi |
⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐵 ⊆ ( Base ‘ 𝑊 ) ) ) |
4 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
5 |
3 4
|
anbi12i |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐵 ⊆ ( Base ‘ 𝑊 ) ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
6 |
|
an4 |
⊢ ( ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐵 ⊆ ( Base ‘ 𝑊 ) ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ↔ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
7 |
5 6
|
bitri |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
8 |
7
|
anbi2i |
⊢ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
10 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
13 |
9 10 11 12 1
|
elocv |
⊢ ( 𝑧 ∈ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
14 |
|
3anan12 |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
15 |
13 14
|
bitri |
⊢ ( 𝑧 ∈ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
16 |
9 10 11 12 1
|
elocv |
⊢ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
17 |
|
3anan12 |
⊢ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
18 |
16 17
|
bitri |
⊢ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
19 |
9 10 11 12 1
|
elocv |
⊢ ( 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ↔ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
20 |
|
3anan12 |
⊢ ( ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
21 |
19 20
|
bitri |
⊢ ( 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
22 |
18 21
|
anbi12i |
⊢ ( ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ) ↔ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) ) |
23 |
|
elin |
⊢ ( 𝑧 ∈ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ↔ ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ) ) |
24 |
|
anandi |
⊢ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) ↔ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) ) |
25 |
22 23 24
|
3bitr4i |
⊢ ( 𝑧 ∈ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) ) |
26 |
8 15 25
|
3bitr4i |
⊢ ( 𝑧 ∈ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ 𝑧 ∈ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
27 |
26
|
eqriv |
⊢ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) |