Metamath Proof Explorer


Theorem unocv

Description: The orthocomplement of a union. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypothesis inocv.o = ( ocv ‘ 𝑊 )
Assertion unocv ( ‘ ( 𝐴𝐵 ) ) = ( ( 𝐴 ) ∩ ( 𝐵 ) )

Proof

Step Hyp Ref Expression
1 inocv.o = ( ocv ‘ 𝑊 )
2 unss ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐵 ⊆ ( Base ‘ 𝑊 ) ) ↔ ( 𝐴𝐵 ) ⊆ ( Base ‘ 𝑊 ) )
3 2 bicomi ( ( 𝐴𝐵 ) ⊆ ( Base ‘ 𝑊 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐵 ⊆ ( Base ‘ 𝑊 ) ) )
4 ralunb ( ∀ 𝑦 ∈ ( 𝐴𝐵 ) ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( ∀ 𝑦𝐴 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∧ ∀ 𝑦𝐵 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )
5 3 4 anbi12i ( ( ( 𝐴𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴𝐵 ) ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐵 ⊆ ( Base ‘ 𝑊 ) ) ∧ ( ∀ 𝑦𝐴 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∧ ∀ 𝑦𝐵 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) )
6 an4 ( ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐵 ⊆ ( Base ‘ 𝑊 ) ) ∧ ( ∀ 𝑦𝐴 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∧ ∀ 𝑦𝐵 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ↔ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐴 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐵 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) )
7 5 6 bitri ( ( ( 𝐴𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴𝐵 ) ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐴 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐵 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) )
8 7 anbi2i ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴𝐵 ) ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐴 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐵 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) )
9 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
10 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
11 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
12 eqid ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
13 9 10 11 12 1 elocv ( 𝑧 ∈ ( ‘ ( 𝐴𝐵 ) ) ↔ ( ( 𝐴𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴𝐵 ) ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )
14 3anan12 ( ( ( 𝐴𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴𝐵 ) ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴𝐵 ) ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) )
15 13 14 bitri ( 𝑧 ∈ ( ‘ ( 𝐴𝐵 ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴𝐵 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦 ∈ ( 𝐴𝐵 ) ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) )
16 9 10 11 12 1 elocv ( 𝑧 ∈ ( 𝐴 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐴 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )
17 3anan12 ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐴 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐴 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) )
18 16 17 bitri ( 𝑧 ∈ ( 𝐴 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐴 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) )
19 9 10 11 12 1 elocv ( 𝑧 ∈ ( 𝐵 ) ↔ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐵 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )
20 3anan12 ( ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐵 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐵 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) )
21 19 20 bitri ( 𝑧 ∈ ( 𝐵 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐵 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) )
22 18 21 anbi12i ( ( 𝑧 ∈ ( 𝐴 ) ∧ 𝑧 ∈ ( 𝐵 ) ) ↔ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐴 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐵 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) )
23 elin ( 𝑧 ∈ ( ( 𝐴 ) ∩ ( 𝐵 ) ) ↔ ( 𝑧 ∈ ( 𝐴 ) ∧ 𝑧 ∈ ( 𝐵 ) ) )
24 anandi ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐴 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐵 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) ↔ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐴 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐵 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) )
25 22 23 24 3bitr4i ( 𝑧 ∈ ( ( 𝐴 ) ∩ ( 𝐵 ) ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝐴 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐴 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑦𝐵 ( 𝑧 ( ·𝑖𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) )
26 8 15 25 3bitr4i ( 𝑧 ∈ ( ‘ ( 𝐴𝐵 ) ) ↔ 𝑧 ∈ ( ( 𝐴 ) ∩ ( 𝐵 ) ) )
27 26 eqriv ( ‘ ( 𝐴𝐵 ) ) = ( ( 𝐴 ) ∩ ( 𝐵 ) )