| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inocv.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 2 |  | unss | ⊢ ( ( 𝐴  ⊆  ( Base ‘ 𝑊 )  ∧  𝐵  ⊆  ( Base ‘ 𝑊 ) )  ↔  ( 𝐴  ∪  𝐵 )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 3 | 2 | bicomi | ⊢ ( ( 𝐴  ∪  𝐵 )  ⊆  ( Base ‘ 𝑊 )  ↔  ( 𝐴  ⊆  ( Base ‘ 𝑊 )  ∧  𝐵  ⊆  ( Base ‘ 𝑊 ) ) ) | 
						
							| 4 |  | ralunb | ⊢ ( ∀ 𝑦  ∈  ( 𝐴  ∪  𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  ( ∀ 𝑦  ∈  𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 5 | 3 4 | anbi12i | ⊢ ( ( ( 𝐴  ∪  𝐵 )  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  ( 𝐴  ∪  𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( ( 𝐴  ⊆  ( Base ‘ 𝑊 )  ∧  𝐵  ⊆  ( Base ‘ 𝑊 ) )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 6 |  | an4 | ⊢ ( ( ( 𝐴  ⊆  ( Base ‘ 𝑊 )  ∧  𝐵  ⊆  ( Base ‘ 𝑊 ) )  ∧  ( ∀ 𝑦  ∈  𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )  ↔  ( ( 𝐴  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 7 | 5 6 | bitri | ⊢ ( ( ( 𝐴  ∪  𝐵 )  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  ( 𝐴  ∪  𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( ( 𝐴  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 8 | 7 | anbi2i | ⊢ ( ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ( ( 𝐴  ∪  𝐵 )  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  ( 𝐴  ∪  𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )  ↔  ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ( ( 𝐴  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 10 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 11 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 12 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 13 | 9 10 11 12 1 | elocv | ⊢ ( 𝑧  ∈  (  ⊥  ‘ ( 𝐴  ∪  𝐵 ) )  ↔  ( ( 𝐴  ∪  𝐵 )  ⊆  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  ( 𝐴  ∪  𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 14 |  | 3anan12 | ⊢ ( ( ( 𝐴  ∪  𝐵 )  ⊆  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  ( 𝐴  ∪  𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ( ( 𝐴  ∪  𝐵 )  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  ( 𝐴  ∪  𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 15 | 13 14 | bitri | ⊢ ( 𝑧  ∈  (  ⊥  ‘ ( 𝐴  ∪  𝐵 ) )  ↔  ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ( ( 𝐴  ∪  𝐵 )  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  ( 𝐴  ∪  𝐵 ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 16 | 9 10 11 12 1 | elocv | ⊢ ( 𝑧  ∈  (  ⊥  ‘ 𝐴 )  ↔  ( 𝐴  ⊆  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 17 |  | 3anan12 | ⊢ ( ( 𝐴  ⊆  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝐴  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 18 | 16 17 | bitri | ⊢ ( 𝑧  ∈  (  ⊥  ‘ 𝐴 )  ↔  ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝐴  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 19 | 9 10 11 12 1 | elocv | ⊢ ( 𝑧  ∈  (  ⊥  ‘ 𝐵 )  ↔  ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 20 |  | 3anan12 | ⊢ ( ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 21 | 19 20 | bitri | ⊢ ( 𝑧  ∈  (  ⊥  ‘ 𝐵 )  ↔  ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 22 | 18 21 | anbi12i | ⊢ ( ( 𝑧  ∈  (  ⊥  ‘ 𝐴 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝐵 ) )  ↔  ( ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝐴  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 23 |  | elin | ⊢ ( 𝑧  ∈  ( (  ⊥  ‘ 𝐴 )  ∩  (  ⊥  ‘ 𝐵 ) )  ↔  ( 𝑧  ∈  (  ⊥  ‘ 𝐴 )  ∧  𝑧  ∈  (  ⊥  ‘ 𝐵 ) ) ) | 
						
							| 24 |  | anandi | ⊢ ( ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ( ( 𝐴  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) )  ↔  ( ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝐴  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 25 | 22 23 24 | 3bitr4i | ⊢ ( 𝑧  ∈  ( (  ⊥  ‘ 𝐴 )  ∩  (  ⊥  ‘ 𝐵 ) )  ↔  ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  ( ( 𝐴  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 26 | 8 15 25 | 3bitr4i | ⊢ ( 𝑧  ∈  (  ⊥  ‘ ( 𝐴  ∪  𝐵 ) )  ↔  𝑧  ∈  ( (  ⊥  ‘ 𝐴 )  ∩  (  ⊥  ‘ 𝐵 ) ) ) | 
						
							| 27 | 26 | eqriv | ⊢ (  ⊥  ‘ ( 𝐴  ∪  𝐵 ) )  =  ( (  ⊥  ‘ 𝐴 )  ∩  (  ⊥  ‘ 𝐵 ) ) |