| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inocv.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 2 |  | iunocv.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | iunss | ⊢ ( ∪  𝑥  ∈  𝐴 𝐵  ⊆  𝑉  ↔  ∀ 𝑥  ∈  𝐴 𝐵  ⊆  𝑉 ) | 
						
							| 4 |  | eliun | ⊢ ( 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↔  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) | 
						
							| 5 | 4 | imbi1i | ⊢ ( ( 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 6 |  | r19.23v | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 7 | 5 6 | bitr4i | ⊢ ( ( 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 8 | 7 | albii | ⊢ ( ∀ 𝑦 ( 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ∀ 𝑦 ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 9 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  ∀ 𝑦 ( 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 10 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 11 | 10 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  ∈  𝐵  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 12 |  | ralcom4 | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  ∈  𝐵  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ∀ 𝑦 ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 13 | 11 12 | bitri | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  ∀ 𝑦 ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 14 | 8 9 13 | 3bitr4i | ⊢ ( ∀ 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 15 | 3 14 | anbi12i | ⊢ ( ( ∪  𝑥  ∈  𝐴 𝐵  ⊆  𝑉  ∧  ∀ 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( ∀ 𝑥  ∈  𝐴 𝐵  ⊆  𝑉  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 16 |  | r19.26 | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝐵  ⊆  𝑉  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( ∀ 𝑥  ∈  𝐴 𝐵  ⊆  𝑉  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 17 | 15 16 | bitr4i | ⊢ ( ( ∪  𝑥  ∈  𝐴 𝐵  ⊆  𝑉  ∧  ∀ 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐵  ⊆  𝑉  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 18 |  | eliin | ⊢ ( 𝑧  ∈  𝑉  →  ( 𝑧  ∈  ∩  𝑥  ∈  𝐴 (  ⊥  ‘ 𝐵 )  ↔  ∀ 𝑥  ∈  𝐴 𝑧  ∈  (  ⊥  ‘ 𝐵 ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 20 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 21 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 22 | 2 19 20 21 1 | elocv | ⊢ ( 𝑧  ∈  (  ⊥  ‘ 𝐵 )  ↔  ( 𝐵  ⊆  𝑉  ∧  𝑧  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 23 |  | 3anan12 | ⊢ ( ( 𝐵  ⊆  𝑉  ∧  𝑧  ∈  𝑉  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( 𝑧  ∈  𝑉  ∧  ( 𝐵  ⊆  𝑉  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 24 | 22 23 | bitri | ⊢ ( 𝑧  ∈  (  ⊥  ‘ 𝐵 )  ↔  ( 𝑧  ∈  𝑉  ∧  ( 𝐵  ⊆  𝑉  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 25 | 24 | baib | ⊢ ( 𝑧  ∈  𝑉  →  ( 𝑧  ∈  (  ⊥  ‘ 𝐵 )  ↔  ( 𝐵  ⊆  𝑉  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 26 | 25 | ralbidv | ⊢ ( 𝑧  ∈  𝑉  →  ( ∀ 𝑥  ∈  𝐴 𝑧  ∈  (  ⊥  ‘ 𝐵 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐵  ⊆  𝑉  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 27 | 18 26 | bitr2d | ⊢ ( 𝑧  ∈  𝑉  →  ( ∀ 𝑥  ∈  𝐴 ( 𝐵  ⊆  𝑉  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  𝑧  ∈  ∩  𝑥  ∈  𝐴 (  ⊥  ‘ 𝐵 ) ) ) | 
						
							| 28 | 17 27 | bitrid | ⊢ ( 𝑧  ∈  𝑉  →  ( ( ∪  𝑥  ∈  𝐴 𝐵  ⊆  𝑉  ∧  ∀ 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  𝑧  ∈  ∩  𝑥  ∈  𝐴 (  ⊥  ‘ 𝐵 ) ) ) | 
						
							| 29 | 28 | pm5.32i | ⊢ ( ( 𝑧  ∈  𝑉  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ⊆  𝑉  ∧  ∀ 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )  ↔  ( 𝑧  ∈  𝑉  ∧  𝑧  ∈  ∩  𝑥  ∈  𝐴 (  ⊥  ‘ 𝐵 ) ) ) | 
						
							| 30 | 2 19 20 21 1 | elocv | ⊢ ( 𝑧  ∈  (  ⊥  ‘ ∪  𝑥  ∈  𝐴 𝐵 )  ↔  ( ∪  𝑥  ∈  𝐴 𝐵  ⊆  𝑉  ∧  𝑧  ∈  𝑉  ∧  ∀ 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 31 |  | 3anan12 | ⊢ ( ( ∪  𝑥  ∈  𝐴 𝐵  ⊆  𝑉  ∧  𝑧  ∈  𝑉  ∧  ∀ 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( 𝑧  ∈  𝑉  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ⊆  𝑉  ∧  ∀ 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 32 | 30 31 | bitri | ⊢ ( 𝑧  ∈  (  ⊥  ‘ ∪  𝑥  ∈  𝐴 𝐵 )  ↔  ( 𝑧  ∈  𝑉  ∧  ( ∪  𝑥  ∈  𝐴 𝐵  ⊆  𝑉  ∧  ∀ 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 33 |  | elin | ⊢ ( 𝑧  ∈  ( 𝑉  ∩  ∩  𝑥  ∈  𝐴 (  ⊥  ‘ 𝐵 ) )  ↔  ( 𝑧  ∈  𝑉  ∧  𝑧  ∈  ∩  𝑥  ∈  𝐴 (  ⊥  ‘ 𝐵 ) ) ) | 
						
							| 34 | 29 32 33 | 3bitr4i | ⊢ ( 𝑧  ∈  (  ⊥  ‘ ∪  𝑥  ∈  𝐴 𝐵 )  ↔  𝑧  ∈  ( 𝑉  ∩  ∩  𝑥  ∈  𝐴 (  ⊥  ‘ 𝐵 ) ) ) | 
						
							| 35 | 34 | eqriv | ⊢ (  ⊥  ‘ ∪  𝑥  ∈  𝐴 𝐵 )  =  ( 𝑉  ∩  ∩  𝑥  ∈  𝐴 (  ⊥  ‘ 𝐵 ) ) |