Metamath Proof Explorer


Theorem iunocv

Description: The orthocomplement of an indexed union. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses inocv.o ˙=ocvW
iunocv.v V=BaseW
Assertion iunocv ˙xAB=VxA˙B

Proof

Step Hyp Ref Expression
1 inocv.o ˙=ocvW
2 iunocv.v V=BaseW
3 iunss xABVxABV
4 eliun yxABxAyB
5 4 imbi1i yxABz𝑖Wy=0ScalarWxAyBz𝑖Wy=0ScalarW
6 r19.23v xAyBz𝑖Wy=0ScalarWxAyBz𝑖Wy=0ScalarW
7 5 6 bitr4i yxABz𝑖Wy=0ScalarWxAyBz𝑖Wy=0ScalarW
8 7 albii yyxABz𝑖Wy=0ScalarWyxAyBz𝑖Wy=0ScalarW
9 df-ral yxABz𝑖Wy=0ScalarWyyxABz𝑖Wy=0ScalarW
10 df-ral yBz𝑖Wy=0ScalarWyyBz𝑖Wy=0ScalarW
11 10 ralbii xAyBz𝑖Wy=0ScalarWxAyyBz𝑖Wy=0ScalarW
12 ralcom4 xAyyBz𝑖Wy=0ScalarWyxAyBz𝑖Wy=0ScalarW
13 11 12 bitri xAyBz𝑖Wy=0ScalarWyxAyBz𝑖Wy=0ScalarW
14 8 9 13 3bitr4i yxABz𝑖Wy=0ScalarWxAyBz𝑖Wy=0ScalarW
15 3 14 anbi12i xABVyxABz𝑖Wy=0ScalarWxABVxAyBz𝑖Wy=0ScalarW
16 r19.26 xABVyBz𝑖Wy=0ScalarWxABVxAyBz𝑖Wy=0ScalarW
17 15 16 bitr4i xABVyxABz𝑖Wy=0ScalarWxABVyBz𝑖Wy=0ScalarW
18 eliin zVzxA˙BxAz˙B
19 eqid 𝑖W=𝑖W
20 eqid ScalarW=ScalarW
21 eqid 0ScalarW=0ScalarW
22 2 19 20 21 1 elocv z˙BBVzVyBz𝑖Wy=0ScalarW
23 3anan12 BVzVyBz𝑖Wy=0ScalarWzVBVyBz𝑖Wy=0ScalarW
24 22 23 bitri z˙BzVBVyBz𝑖Wy=0ScalarW
25 24 baib zVz˙BBVyBz𝑖Wy=0ScalarW
26 25 ralbidv zVxAz˙BxABVyBz𝑖Wy=0ScalarW
27 18 26 bitr2d zVxABVyBz𝑖Wy=0ScalarWzxA˙B
28 17 27 bitrid zVxABVyxABz𝑖Wy=0ScalarWzxA˙B
29 28 pm5.32i zVxABVyxABz𝑖Wy=0ScalarWzVzxA˙B
30 2 19 20 21 1 elocv z˙xABxABVzVyxABz𝑖Wy=0ScalarW
31 3anan12 xABVzVyxABz𝑖Wy=0ScalarWzVxABVyxABz𝑖Wy=0ScalarW
32 30 31 bitri z˙xABzVxABVyxABz𝑖Wy=0ScalarW
33 elin zVxA˙BzVzxA˙B
34 29 32 33 3bitr4i z˙xABzVxA˙B
35 34 eqriv ˙xAB=VxA˙B