Metamath Proof Explorer


Theorem cssval

Description: The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssval.o = ( ocv ‘ 𝑊 )
cssval.c 𝐶 = ( ClSubSp ‘ 𝑊 )
Assertion cssval ( 𝑊𝑋𝐶 = { 𝑠𝑠 = ( ‘ ( 𝑠 ) ) } )

Proof

Step Hyp Ref Expression
1 cssval.o = ( ocv ‘ 𝑊 )
2 cssval.c 𝐶 = ( ClSubSp ‘ 𝑊 )
3 elex ( 𝑊𝑋𝑊 ∈ V )
4 fveq2 ( 𝑤 = 𝑊 → ( ocv ‘ 𝑤 ) = ( ocv ‘ 𝑊 ) )
5 4 1 eqtr4di ( 𝑤 = 𝑊 → ( ocv ‘ 𝑤 ) = )
6 5 fveq1d ( 𝑤 = 𝑊 → ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) = ( 𝑠 ) )
7 5 6 fveq12d ( 𝑤 = 𝑊 → ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) = ( ‘ ( 𝑠 ) ) )
8 7 eqeq2d ( 𝑤 = 𝑊 → ( 𝑠 = ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) ↔ 𝑠 = ( ‘ ( 𝑠 ) ) ) )
9 8 abbidv ( 𝑤 = 𝑊 → { 𝑠𝑠 = ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) } = { 𝑠𝑠 = ( ‘ ( 𝑠 ) ) } )
10 df-css ClSubSp = ( 𝑤 ∈ V ↦ { 𝑠𝑠 = ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) } )
11 fvex ( Base ‘ 𝑊 ) ∈ V
12 11 pwex 𝒫 ( Base ‘ 𝑊 ) ∈ V
13 id ( 𝑠 = ( ‘ ( 𝑠 ) ) → 𝑠 = ( ‘ ( 𝑠 ) ) )
14 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
15 14 1 ocvss ( ‘ ( 𝑠 ) ) ⊆ ( Base ‘ 𝑊 )
16 fvex ( ‘ ( 𝑠 ) ) ∈ V
17 16 elpw ( ( ‘ ( 𝑠 ) ) ∈ 𝒫 ( Base ‘ 𝑊 ) ↔ ( ‘ ( 𝑠 ) ) ⊆ ( Base ‘ 𝑊 ) )
18 15 17 mpbir ( ‘ ( 𝑠 ) ) ∈ 𝒫 ( Base ‘ 𝑊 )
19 13 18 eqeltrdi ( 𝑠 = ( ‘ ( 𝑠 ) ) → 𝑠 ∈ 𝒫 ( Base ‘ 𝑊 ) )
20 19 abssi { 𝑠𝑠 = ( ‘ ( 𝑠 ) ) } ⊆ 𝒫 ( Base ‘ 𝑊 )
21 12 20 ssexi { 𝑠𝑠 = ( ‘ ( 𝑠 ) ) } ∈ V
22 9 10 21 fvmpt ( 𝑊 ∈ V → ( ClSubSp ‘ 𝑊 ) = { 𝑠𝑠 = ( ‘ ( 𝑠 ) ) } )
23 2 22 syl5eq ( 𝑊 ∈ V → 𝐶 = { 𝑠𝑠 = ( ‘ ( 𝑠 ) ) } )
24 3 23 syl ( 𝑊𝑋𝐶 = { 𝑠𝑠 = ( ‘ ( 𝑠 ) ) } )