| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cssval.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
| 2 |
|
cssval.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
| 3 |
|
elex |
⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) |
| 4 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ocv ‘ 𝑤 ) = ( ocv ‘ 𝑊 ) ) |
| 5 |
4 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ocv ‘ 𝑤 ) = ⊥ ) |
| 6 |
5
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) = ( ⊥ ‘ 𝑠 ) ) |
| 7 |
5 6
|
fveq12d |
⊢ ( 𝑤 = 𝑊 → ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ) |
| 8 |
7
|
eqeq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑠 = ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) ↔ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ) ) |
| 9 |
8
|
abbidv |
⊢ ( 𝑤 = 𝑊 → { 𝑠 ∣ 𝑠 = ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) } = { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) |
| 10 |
|
df-css |
⊢ ClSubSp = ( 𝑤 ∈ V ↦ { 𝑠 ∣ 𝑠 = ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) } ) |
| 11 |
|
fvex |
⊢ ( Base ‘ 𝑊 ) ∈ V |
| 12 |
11
|
pwex |
⊢ 𝒫 ( Base ‘ 𝑊 ) ∈ V |
| 13 |
|
id |
⊢ ( 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) → 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 15 |
14 1
|
ocvss |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ⊆ ( Base ‘ 𝑊 ) |
| 16 |
|
fvex |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ∈ V |
| 17 |
16
|
elpw |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ∈ 𝒫 ( Base ‘ 𝑊 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ⊆ ( Base ‘ 𝑊 ) ) |
| 18 |
15 17
|
mpbir |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ∈ 𝒫 ( Base ‘ 𝑊 ) |
| 19 |
13 18
|
eqeltrdi |
⊢ ( 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) → 𝑠 ∈ 𝒫 ( Base ‘ 𝑊 ) ) |
| 20 |
19
|
abssi |
⊢ { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ⊆ 𝒫 ( Base ‘ 𝑊 ) |
| 21 |
12 20
|
ssexi |
⊢ { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ∈ V |
| 22 |
9 10 21
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( ClSubSp ‘ 𝑊 ) = { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) |
| 23 |
2 22
|
eqtrid |
⊢ ( 𝑊 ∈ V → 𝐶 = { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) |
| 24 |
3 23
|
syl |
⊢ ( 𝑊 ∈ 𝑋 → 𝐶 = { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) |