| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cssval.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 2 |  | cssval.c | ⊢ 𝐶  =  ( ClSubSp ‘ 𝑊 ) | 
						
							| 3 |  | elex | ⊢ ( 𝑊  ∈  𝑋  →  𝑊  ∈  V ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ocv ‘ 𝑤 )  =  ( ocv ‘ 𝑊 ) ) | 
						
							| 5 | 4 1 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( ocv ‘ 𝑤 )  =   ⊥  ) | 
						
							| 6 | 5 | fveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ocv ‘ 𝑤 ) ‘ 𝑠 )  =  (  ⊥  ‘ 𝑠 ) ) | 
						
							| 7 | 5 6 | fveq12d | ⊢ ( 𝑤  =  𝑊  →  ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) )  =  (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) ) ) | 
						
							| 8 | 7 | eqeq2d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑠  =  ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) )  ↔  𝑠  =  (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) ) ) ) | 
						
							| 9 | 8 | abbidv | ⊢ ( 𝑤  =  𝑊  →  { 𝑠  ∣  𝑠  =  ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) }  =  { 𝑠  ∣  𝑠  =  (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) ) } ) | 
						
							| 10 |  | df-css | ⊢ ClSubSp  =  ( 𝑤  ∈  V  ↦  { 𝑠  ∣  𝑠  =  ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) } ) | 
						
							| 11 |  | fvex | ⊢ ( Base ‘ 𝑊 )  ∈  V | 
						
							| 12 | 11 | pwex | ⊢ 𝒫  ( Base ‘ 𝑊 )  ∈  V | 
						
							| 13 |  | id | ⊢ ( 𝑠  =  (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) )  →  𝑠  =  (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 15 | 14 1 | ocvss | ⊢ (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) )  ⊆  ( Base ‘ 𝑊 ) | 
						
							| 16 |  | fvex | ⊢ (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) )  ∈  V | 
						
							| 17 | 16 | elpw | ⊢ ( (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) )  ∈  𝒫  ( Base ‘ 𝑊 )  ↔  (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 18 | 15 17 | mpbir | ⊢ (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) )  ∈  𝒫  ( Base ‘ 𝑊 ) | 
						
							| 19 | 13 18 | eqeltrdi | ⊢ ( 𝑠  =  (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) )  →  𝑠  ∈  𝒫  ( Base ‘ 𝑊 ) ) | 
						
							| 20 | 19 | abssi | ⊢ { 𝑠  ∣  𝑠  =  (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) ) }  ⊆  𝒫  ( Base ‘ 𝑊 ) | 
						
							| 21 | 12 20 | ssexi | ⊢ { 𝑠  ∣  𝑠  =  (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) ) }  ∈  V | 
						
							| 22 | 9 10 21 | fvmpt | ⊢ ( 𝑊  ∈  V  →  ( ClSubSp ‘ 𝑊 )  =  { 𝑠  ∣  𝑠  =  (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) ) } ) | 
						
							| 23 | 2 22 | eqtrid | ⊢ ( 𝑊  ∈  V  →  𝐶  =  { 𝑠  ∣  𝑠  =  (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) ) } ) | 
						
							| 24 | 3 23 | syl | ⊢ ( 𝑊  ∈  𝑋  →  𝐶  =  { 𝑠  ∣  𝑠  =  (  ⊥  ‘ (  ⊥  ‘ 𝑠 ) ) } ) |