| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cssval.o |  |-  ._|_ = ( ocv ` W ) | 
						
							| 2 |  | cssval.c |  |-  C = ( ClSubSp ` W ) | 
						
							| 3 |  | elex |  |-  ( W e. X -> W e. _V ) | 
						
							| 4 |  | fveq2 |  |-  ( w = W -> ( ocv ` w ) = ( ocv ` W ) ) | 
						
							| 5 | 4 1 | eqtr4di |  |-  ( w = W -> ( ocv ` w ) = ._|_ ) | 
						
							| 6 | 5 | fveq1d |  |-  ( w = W -> ( ( ocv ` w ) ` s ) = ( ._|_ ` s ) ) | 
						
							| 7 | 5 6 | fveq12d |  |-  ( w = W -> ( ( ocv ` w ) ` ( ( ocv ` w ) ` s ) ) = ( ._|_ ` ( ._|_ ` s ) ) ) | 
						
							| 8 | 7 | eqeq2d |  |-  ( w = W -> ( s = ( ( ocv ` w ) ` ( ( ocv ` w ) ` s ) ) <-> s = ( ._|_ ` ( ._|_ ` s ) ) ) ) | 
						
							| 9 | 8 | abbidv |  |-  ( w = W -> { s | s = ( ( ocv ` w ) ` ( ( ocv ` w ) ` s ) ) } = { s | s = ( ._|_ ` ( ._|_ ` s ) ) } ) | 
						
							| 10 |  | df-css |  |-  ClSubSp = ( w e. _V |-> { s | s = ( ( ocv ` w ) ` ( ( ocv ` w ) ` s ) ) } ) | 
						
							| 11 |  | fvex |  |-  ( Base ` W ) e. _V | 
						
							| 12 | 11 | pwex |  |-  ~P ( Base ` W ) e. _V | 
						
							| 13 |  | id |  |-  ( s = ( ._|_ ` ( ._|_ ` s ) ) -> s = ( ._|_ ` ( ._|_ ` s ) ) ) | 
						
							| 14 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 15 | 14 1 | ocvss |  |-  ( ._|_ ` ( ._|_ ` s ) ) C_ ( Base ` W ) | 
						
							| 16 |  | fvex |  |-  ( ._|_ ` ( ._|_ ` s ) ) e. _V | 
						
							| 17 | 16 | elpw |  |-  ( ( ._|_ ` ( ._|_ ` s ) ) e. ~P ( Base ` W ) <-> ( ._|_ ` ( ._|_ ` s ) ) C_ ( Base ` W ) ) | 
						
							| 18 | 15 17 | mpbir |  |-  ( ._|_ ` ( ._|_ ` s ) ) e. ~P ( Base ` W ) | 
						
							| 19 | 13 18 | eqeltrdi |  |-  ( s = ( ._|_ ` ( ._|_ ` s ) ) -> s e. ~P ( Base ` W ) ) | 
						
							| 20 | 19 | abssi |  |-  { s | s = ( ._|_ ` ( ._|_ ` s ) ) } C_ ~P ( Base ` W ) | 
						
							| 21 | 12 20 | ssexi |  |-  { s | s = ( ._|_ ` ( ._|_ ` s ) ) } e. _V | 
						
							| 22 | 9 10 21 | fvmpt |  |-  ( W e. _V -> ( ClSubSp ` W ) = { s | s = ( ._|_ ` ( ._|_ ` s ) ) } ) | 
						
							| 23 | 2 22 | eqtrid |  |-  ( W e. _V -> C = { s | s = ( ._|_ ` ( ._|_ ` s ) ) } ) | 
						
							| 24 | 3 23 | syl |  |-  ( W e. X -> C = { s | s = ( ._|_ ` ( ._|_ ` s ) ) } ) |