Description: The orthocomplement of a subset is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvss.v | |- V = ( Base ` W ) |
|
| ocvss.o | |- ._|_ = ( ocv ` W ) |
||
| Assertion | ocvss | |- ( ._|_ ` S ) C_ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvss.v | |- V = ( Base ` W ) |
|
| 2 | ocvss.o | |- ._|_ = ( ocv ` W ) |
|
| 3 | eqid | |- ( .i ` W ) = ( .i ` W ) |
|
| 4 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 5 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 6 | 1 3 4 5 2 | elocv | |- ( x e. ( ._|_ ` S ) <-> ( S C_ V /\ x e. V /\ A. y e. S ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) ) ) |
| 7 | 6 | simp2bi | |- ( x e. ( ._|_ ` S ) -> x e. V ) |
| 8 | 7 | ssriv | |- ( ._|_ ` S ) C_ V |