| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocvz.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | ocvz.o |  |-  ._|_ = ( ocv ` W ) | 
						
							| 3 |  | ocvz.z |  |-  .0. = ( 0g ` W ) | 
						
							| 4 | 1 2 | ocvss |  |-  ( ._|_ ` V ) C_ V | 
						
							| 5 |  | sseqin2 |  |-  ( ( ._|_ ` V ) C_ V <-> ( V i^i ( ._|_ ` V ) ) = ( ._|_ ` V ) ) | 
						
							| 6 | 4 5 | mpbi |  |-  ( V i^i ( ._|_ ` V ) ) = ( ._|_ ` V ) | 
						
							| 7 |  | phllmod |  |-  ( W e. PreHil -> W e. LMod ) | 
						
							| 8 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 9 | 1 8 | lss1 |  |-  ( W e. LMod -> V e. ( LSubSp ` W ) ) | 
						
							| 10 | 7 9 | syl |  |-  ( W e. PreHil -> V e. ( LSubSp ` W ) ) | 
						
							| 11 | 2 8 3 | ocvin |  |-  ( ( W e. PreHil /\ V e. ( LSubSp ` W ) ) -> ( V i^i ( ._|_ ` V ) ) = { .0. } ) | 
						
							| 12 | 10 11 | mpdan |  |-  ( W e. PreHil -> ( V i^i ( ._|_ ` V ) ) = { .0. } ) | 
						
							| 13 | 6 12 | eqtr3id |  |-  ( W e. PreHil -> ( ._|_ ` V ) = { .0. } ) |