Metamath Proof Explorer


Theorem pjdm2

Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjdm2.v 𝑉 = ( Base ‘ 𝑊 )
pjdm2.l 𝐿 = ( LSubSp ‘ 𝑊 )
pjdm2.o = ( ocv ‘ 𝑊 )
pjdm2.s = ( LSSum ‘ 𝑊 )
pjdm2.k 𝐾 = ( proj ‘ 𝑊 )
Assertion pjdm2 ( 𝑊 ∈ PreHil → ( 𝑇 ∈ dom 𝐾 ↔ ( 𝑇𝐿 ∧ ( 𝑇 ( 𝑇 ) ) = 𝑉 ) ) )

Proof

Step Hyp Ref Expression
1 pjdm2.v 𝑉 = ( Base ‘ 𝑊 )
2 pjdm2.l 𝐿 = ( LSubSp ‘ 𝑊 )
3 pjdm2.o = ( ocv ‘ 𝑊 )
4 pjdm2.s = ( LSSum ‘ 𝑊 )
5 pjdm2.k 𝐾 = ( proj ‘ 𝑊 )
6 eqid ( proj1𝑊 ) = ( proj1𝑊 )
7 1 2 3 6 5 pjdm ( 𝑇 ∈ dom 𝐾 ↔ ( 𝑇𝐿 ∧ ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : 𝑉𝑉 ) )
8 eqid ( +g𝑊 ) = ( +g𝑊 )
9 eqid ( 0g𝑊 ) = ( 0g𝑊 )
10 eqid ( Cntz ‘ 𝑊 ) = ( Cntz ‘ 𝑊 )
11 phllmod ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod )
12 11 adantr ( ( 𝑊 ∈ PreHil ∧ 𝑇𝐿 ) → 𝑊 ∈ LMod )
13 2 lsssssubg ( 𝑊 ∈ LMod → 𝐿 ⊆ ( SubGrp ‘ 𝑊 ) )
14 12 13 syl ( ( 𝑊 ∈ PreHil ∧ 𝑇𝐿 ) → 𝐿 ⊆ ( SubGrp ‘ 𝑊 ) )
15 simpr ( ( 𝑊 ∈ PreHil ∧ 𝑇𝐿 ) → 𝑇𝐿 )
16 14 15 sseldd ( ( 𝑊 ∈ PreHil ∧ 𝑇𝐿 ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) )
17 1 2 lssss ( 𝑇𝐿𝑇𝑉 )
18 1 3 2 ocvlss ( ( 𝑊 ∈ PreHil ∧ 𝑇𝑉 ) → ( 𝑇 ) ∈ 𝐿 )
19 17 18 sylan2 ( ( 𝑊 ∈ PreHil ∧ 𝑇𝐿 ) → ( 𝑇 ) ∈ 𝐿 )
20 14 19 sseldd ( ( 𝑊 ∈ PreHil ∧ 𝑇𝐿 ) → ( 𝑇 ) ∈ ( SubGrp ‘ 𝑊 ) )
21 3 2 9 ocvin ( ( 𝑊 ∈ PreHil ∧ 𝑇𝐿 ) → ( 𝑇 ∩ ( 𝑇 ) ) = { ( 0g𝑊 ) } )
22 lmodabl ( 𝑊 ∈ LMod → 𝑊 ∈ Abel )
23 12 22 syl ( ( 𝑊 ∈ PreHil ∧ 𝑇𝐿 ) → 𝑊 ∈ Abel )
24 10 23 16 20 ablcntzd ( ( 𝑊 ∈ PreHil ∧ 𝑇𝐿 ) → 𝑇 ⊆ ( ( Cntz ‘ 𝑊 ) ‘ ( 𝑇 ) ) )
25 8 4 9 10 16 20 21 24 6 pj1f ( ( 𝑊 ∈ PreHil ∧ 𝑇𝐿 ) → ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : ( 𝑇 ( 𝑇 ) ) ⟶ 𝑇 )
26 17 adantl ( ( 𝑊 ∈ PreHil ∧ 𝑇𝐿 ) → 𝑇𝑉 )
27 25 26 fssd ( ( 𝑊 ∈ PreHil ∧ 𝑇𝐿 ) → ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : ( 𝑇 ( 𝑇 ) ) ⟶ 𝑉 )
28 fdm ( ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : ( 𝑇 ( 𝑇 ) ) ⟶ 𝑉 → dom ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) = ( 𝑇 ( 𝑇 ) ) )
29 28 eqcomd ( ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : ( 𝑇 ( 𝑇 ) ) ⟶ 𝑉 → ( 𝑇 ( 𝑇 ) ) = dom ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) )
30 fdm ( ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : 𝑉𝑉 → dom ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) = 𝑉 )
31 30 eqeq2d ( ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : 𝑉𝑉 → ( ( 𝑇 ( 𝑇 ) ) = dom ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) ↔ ( 𝑇 ( 𝑇 ) ) = 𝑉 ) )
32 29 31 syl5ibcom ( ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : ( 𝑇 ( 𝑇 ) ) ⟶ 𝑉 → ( ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : 𝑉𝑉 → ( 𝑇 ( 𝑇 ) ) = 𝑉 ) )
33 feq2 ( ( 𝑇 ( 𝑇 ) ) = 𝑉 → ( ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : ( 𝑇 ( 𝑇 ) ) ⟶ 𝑉 ↔ ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : 𝑉𝑉 ) )
34 33 biimpcd ( ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : ( 𝑇 ( 𝑇 ) ) ⟶ 𝑉 → ( ( 𝑇 ( 𝑇 ) ) = 𝑉 → ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : 𝑉𝑉 ) )
35 32 34 impbid ( ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : ( 𝑇 ( 𝑇 ) ) ⟶ 𝑉 → ( ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : 𝑉𝑉 ↔ ( 𝑇 ( 𝑇 ) ) = 𝑉 ) )
36 27 35 syl ( ( 𝑊 ∈ PreHil ∧ 𝑇𝐿 ) → ( ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : 𝑉𝑉 ↔ ( 𝑇 ( 𝑇 ) ) = 𝑉 ) )
37 36 pm5.32da ( 𝑊 ∈ PreHil → ( ( 𝑇𝐿 ∧ ( 𝑇 ( proj1𝑊 ) ( 𝑇 ) ) : 𝑉𝑉 ) ↔ ( 𝑇𝐿 ∧ ( 𝑇 ( 𝑇 ) ) = 𝑉 ) ) )
38 7 37 syl5bb ( 𝑊 ∈ PreHil → ( 𝑇 ∈ dom 𝐾 ↔ ( 𝑇𝐿 ∧ ( 𝑇 ( 𝑇 ) ) = 𝑉 ) ) )