| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjdm2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
pjdm2.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
pjdm2.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
| 4 |
|
pjdm2.s |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 5 |
|
pjdm2.k |
⊢ 𝐾 = ( proj ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( proj1 ‘ 𝑊 ) = ( proj1 ‘ 𝑊 ) |
| 7 |
1 2 3 6 5
|
pjdm |
⊢ ( 𝑇 ∈ dom 𝐾 ↔ ( 𝑇 ∈ 𝐿 ∧ ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 ) ) |
| 8 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 10 |
|
eqid |
⊢ ( Cntz ‘ 𝑊 ) = ( Cntz ‘ 𝑊 ) |
| 11 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿 ) → 𝑊 ∈ LMod ) |
| 13 |
2
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝐿 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿 ) → 𝐿 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 15 |
|
simpr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿 ) → 𝑇 ∈ 𝐿 ) |
| 16 |
14 15
|
sseldd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿 ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 17 |
1 2
|
lssss |
⊢ ( 𝑇 ∈ 𝐿 → 𝑇 ⊆ 𝑉 ) |
| 18 |
1 3 2
|
ocvlss |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑇 ) ∈ 𝐿 ) |
| 19 |
17 18
|
sylan2 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿 ) → ( ⊥ ‘ 𝑇 ) ∈ 𝐿 ) |
| 20 |
14 19
|
sseldd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿 ) → ( ⊥ ‘ 𝑇 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 21 |
3 2 9
|
ocvin |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 ∩ ( ⊥ ‘ 𝑇 ) ) = { ( 0g ‘ 𝑊 ) } ) |
| 22 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
| 23 |
12 22
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿 ) → 𝑊 ∈ Abel ) |
| 24 |
10 23 16 20
|
ablcntzd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿 ) → 𝑇 ⊆ ( ( Cntz ‘ 𝑊 ) ‘ ( ⊥ ‘ 𝑇 ) ) ) |
| 25 |
8 4 9 10 16 20 21 24 6
|
pj1f |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) ⟶ 𝑇 ) |
| 26 |
17
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿 ) → 𝑇 ⊆ 𝑉 ) |
| 27 |
25 26
|
fssd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) ⟶ 𝑉 ) |
| 28 |
|
fdm |
⊢ ( ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) ⟶ 𝑉 → dom ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) = ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) ) |
| 29 |
28
|
eqcomd |
⊢ ( ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) ⟶ 𝑉 → ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) = dom ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) ) |
| 30 |
|
fdm |
⊢ ( ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 → dom ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) = 𝑉 ) |
| 31 |
30
|
eqeq2d |
⊢ ( ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 → ( ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) = dom ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) ↔ ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) = 𝑉 ) ) |
| 32 |
29 31
|
syl5ibcom |
⊢ ( ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) ⟶ 𝑉 → ( ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 → ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) = 𝑉 ) ) |
| 33 |
|
feq2 |
⊢ ( ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) = 𝑉 → ( ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) ⟶ 𝑉 ↔ ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 ) ) |
| 34 |
33
|
biimpcd |
⊢ ( ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) ⟶ 𝑉 → ( ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) = 𝑉 → ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 ) ) |
| 35 |
32 34
|
impbid |
⊢ ( ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) ⟶ 𝑉 → ( ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 ↔ ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) = 𝑉 ) ) |
| 36 |
27 35
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ 𝐿 ) → ( ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 ↔ ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) = 𝑉 ) ) |
| 37 |
36
|
pm5.32da |
⊢ ( 𝑊 ∈ PreHil → ( ( 𝑇 ∈ 𝐿 ∧ ( 𝑇 ( proj1 ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 ) ↔ ( 𝑇 ∈ 𝐿 ∧ ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) = 𝑉 ) ) ) |
| 38 |
7 37
|
bitrid |
⊢ ( 𝑊 ∈ PreHil → ( 𝑇 ∈ dom 𝐾 ↔ ( 𝑇 ∈ 𝐿 ∧ ( 𝑇 ⊕ ( ⊥ ‘ 𝑇 ) ) = 𝑉 ) ) ) |