| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjf.k | ⊢ 𝐾  =  ( proj ‘ 𝑊 ) | 
						
							| 2 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( LSSum ‘ 𝑊 )  =  ( LSSum ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( proj1 ‘ 𝑊 )  =  ( proj1 ‘ 𝑊 ) | 
						
							| 6 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  𝑊  ∈  LMod ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 9 |  | eqid | ⊢ ( ocv ‘ 𝑊 )  =  ( ocv ‘ 𝑊 ) | 
						
							| 10 | 8 2 9 3 1 | pjdm2 | ⊢ ( 𝑊  ∈  PreHil  →  ( 𝑥  ∈  dom  𝐾  ↔  ( 𝑥  ∈  ( LSubSp ‘ 𝑊 )  ∧  ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) )  =  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 11 | 10 | simprbda | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  𝑥  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 12 | 8 2 | lssss | ⊢ ( 𝑥  ∈  ( LSubSp ‘ 𝑊 )  →  𝑥  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  𝑥  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 14 | 8 9 2 | ocvlss | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  ( Base ‘ 𝑊 ) )  →  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 15 | 13 14 | syldan | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 16 | 9 2 4 | ocvin | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  ( LSubSp ‘ 𝑊 ) )  →  ( 𝑥  ∩  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) )  =  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 17 | 11 16 | syldan | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  ( 𝑥  ∩  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) )  =  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 18 | 2 3 4 5 7 11 15 17 | pj1lmhm | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  ( 𝑥 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) )  ∈  ( ( 𝑊  ↾s  ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) )  LMHom  𝑊 ) ) | 
						
							| 19 | 10 | simplbda | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  ( 𝑊  ↾s  ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) )  =  ( 𝑊  ↾s  ( Base ‘ 𝑊 ) ) ) | 
						
							| 21 | 8 | ressid | ⊢ ( 𝑊  ∈  PreHil  →  ( 𝑊  ↾s  ( Base ‘ 𝑊 ) )  =  𝑊 ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  ( 𝑊  ↾s  ( Base ‘ 𝑊 ) )  =  𝑊 ) | 
						
							| 23 | 20 22 | eqtrd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  ( 𝑊  ↾s  ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) )  =  𝑊 ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  ( ( 𝑊  ↾s  ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) )  LMHom  𝑊 )  =  ( 𝑊  LMHom  𝑊 ) ) | 
						
							| 25 | 18 24 | eleqtrd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ∈  dom  𝐾 )  →  ( 𝑥 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) )  ∈  ( 𝑊  LMHom  𝑊 ) ) | 
						
							| 26 | 9 5 1 | pjfval2 | ⊢ 𝐾  =  ( 𝑥  ∈  dom  𝐾  ↦  ( 𝑥 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) ) | 
						
							| 27 | 25 26 | fmptd | ⊢ ( 𝑊  ∈  PreHil  →  𝐾 : dom  𝐾 ⟶ ( 𝑊  LMHom  𝑊 ) ) |