| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjf.k |
⊢ 𝐾 = ( proj ‘ 𝑊 ) |
| 2 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( proj1 ‘ 𝑊 ) = ( proj1 ‘ 𝑊 ) |
| 6 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → 𝑊 ∈ LMod ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
| 10 |
8 2 9 3 1
|
pjdm2 |
⊢ ( 𝑊 ∈ PreHil → ( 𝑥 ∈ dom 𝐾 ↔ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) = ( Base ‘ 𝑊 ) ) ) ) |
| 11 |
10
|
simprbda |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 12 |
8 2
|
lssss |
⊢ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) → 𝑥 ⊆ ( Base ‘ 𝑊 ) ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → 𝑥 ⊆ ( Base ‘ 𝑊 ) ) |
| 14 |
8 9 2
|
ocvlss |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ ( Base ‘ 𝑊 ) ) → ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 15 |
13 14
|
syldan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 16 |
9 2 4
|
ocvin |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑥 ∩ ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) = { ( 0g ‘ 𝑊 ) } ) |
| 17 |
11 16
|
syldan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → ( 𝑥 ∩ ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) = { ( 0g ‘ 𝑊 ) } ) |
| 18 |
2 3 4 5 7 11 15 17
|
pj1lmhm |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → ( 𝑥 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) ∈ ( ( 𝑊 ↾s ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) ) LMHom 𝑊 ) ) |
| 19 |
10
|
simplbda |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) = ( Base ‘ 𝑊 ) ) |
| 20 |
19
|
oveq2d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → ( 𝑊 ↾s ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) ) = ( 𝑊 ↾s ( Base ‘ 𝑊 ) ) ) |
| 21 |
8
|
ressid |
⊢ ( 𝑊 ∈ PreHil → ( 𝑊 ↾s ( Base ‘ 𝑊 ) ) = 𝑊 ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → ( 𝑊 ↾s ( Base ‘ 𝑊 ) ) = 𝑊 ) |
| 23 |
20 22
|
eqtrd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → ( 𝑊 ↾s ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) ) = 𝑊 ) |
| 24 |
23
|
oveq1d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → ( ( 𝑊 ↾s ( 𝑥 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) ) LMHom 𝑊 ) = ( 𝑊 LMHom 𝑊 ) ) |
| 25 |
18 24
|
eleqtrd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾 ) → ( 𝑥 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) ∈ ( 𝑊 LMHom 𝑊 ) ) |
| 26 |
9 5 1
|
pjfval2 |
⊢ 𝐾 = ( 𝑥 ∈ dom 𝐾 ↦ ( 𝑥 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
| 27 |
25 26
|
fmptd |
⊢ ( 𝑊 ∈ PreHil → 𝐾 : dom 𝐾 ⟶ ( 𝑊 LMHom 𝑊 ) ) |