| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pj1lmhm.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
| 2 |
|
pj1lmhm.s |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 3 |
|
pj1lmhm.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 4 |
|
pj1lmhm.p |
⊢ 𝑃 = ( proj1 ‘ 𝑊 ) |
| 5 |
|
pj1lmhm.1 |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 6 |
|
pj1lmhm.2 |
⊢ ( 𝜑 → 𝑇 ∈ 𝐿 ) |
| 7 |
|
pj1lmhm.3 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐿 ) |
| 8 |
|
pj1lmhm.4 |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 9 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 10 |
|
eqid |
⊢ ( Cntz ‘ 𝑊 ) = ( Cntz ‘ 𝑊 ) |
| 11 |
1
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝐿 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 12 |
5 11
|
syl |
⊢ ( 𝜑 → 𝐿 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 13 |
12 6
|
sseldd |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 14 |
12 7
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 15 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
| 16 |
5 15
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
| 17 |
10 16 13 14
|
ablcntzd |
⊢ ( 𝜑 → 𝑇 ⊆ ( ( Cntz ‘ 𝑊 ) ‘ 𝑈 ) ) |
| 18 |
9 2 3 10 13 14 8 17 4
|
pj1ghm |
⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom 𝑊 ) ) |
| 19 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) |
| 21 |
9 2 3 10 13 14 8 17 4
|
pj1id |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑦 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ( +g ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) |
| 22 |
21
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑦 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ( +g ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) |
| 23 |
22
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ( +g ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 24 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑊 ∈ LMod ) |
| 25 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 26 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑇 ∈ 𝐿 ) |
| 27 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 28 |
27 1
|
lssss |
⊢ ( 𝑇 ∈ 𝐿 → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) |
| 29 |
26 28
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) |
| 30 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 31 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 32 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 33 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑇 ⊆ ( ( Cntz ‘ 𝑊 ) ‘ 𝑈 ) ) |
| 34 |
9 2 3 10 30 31 32 33 4
|
pj1f |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ) |
| 35 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 36 |
34 35
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ 𝑇 ) |
| 37 |
29 36
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 38 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑈 ∈ 𝐿 ) |
| 39 |
27 1
|
lssss |
⊢ ( 𝑈 ∈ 𝐿 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 40 |
38 39
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 41 |
9 2 3 10 30 31 32 33 4
|
pj2f |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑈 𝑃 𝑇 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑈 ) |
| 42 |
41 35
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ 𝑈 ) |
| 43 |
40 42
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 44 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 45 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 46 |
27 9 19 44 45
|
lmodvsdi |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ( +g ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ( +g ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 47 |
24 25 37 43 46
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ( +g ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ( +g ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 48 |
23 47
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ( +g ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 49 |
1 2
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝐿 ∧ 𝑈 ∈ 𝐿 ) → ( 𝑇 ⊕ 𝑈 ) ∈ 𝐿 ) |
| 50 |
5 6 7 49
|
syl3anc |
⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ∈ 𝐿 ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ 𝐿 ) |
| 52 |
19 44 45 1
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ⊕ 𝑈 ) ∈ 𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 53 |
24 51 25 35 52
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 54 |
19 44 45 1
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∈ 𝑇 ) |
| 55 |
24 26 25 36 54
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∈ 𝑇 ) |
| 56 |
19 44 45 1
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ 𝑈 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ∈ 𝑈 ) |
| 57 |
24 38 25 42 56
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ∈ 𝑈 ) |
| 58 |
9 2 3 10 30 31 32 33 4 53 55 57
|
pj1eq |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ( +g ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) ) |
| 59 |
48 58
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 60 |
59
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) |
| 61 |
60
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) |
| 62 |
12 50
|
sseldd |
⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 63 |
|
eqid |
⊢ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) = ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) |
| 64 |
63
|
subgbas |
⊢ ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) → ( 𝑇 ⊕ 𝑈 ) = ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 65 |
62 64
|
syl |
⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) = ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 66 |
65
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) ) |
| 67 |
66
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) ) |
| 68 |
61 67
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) |
| 69 |
63 1
|
lsslmod |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ⊕ 𝑈 ) ∈ 𝐿 ) → ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ∈ LMod ) |
| 70 |
5 50 69
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ∈ LMod ) |
| 71 |
|
ovex |
⊢ ( 𝑇 ⊕ 𝑈 ) ∈ V |
| 72 |
63 19
|
resssca |
⊢ ( ( 𝑇 ⊕ 𝑈 ) ∈ V → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 73 |
71 72
|
ax-mp |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) |
| 74 |
|
eqid |
⊢ ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) = ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) |
| 75 |
63 44
|
ressvsca |
⊢ ( ( 𝑇 ⊕ 𝑈 ) ∈ V → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 76 |
71 75
|
ax-mp |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) |
| 77 |
73 19 45 74 76 44
|
islmhm3 |
⊢ ( ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ∈ LMod ∧ 𝑊 ∈ LMod ) → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom 𝑊 ) ↔ ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom 𝑊 ) ∧ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) ) ) |
| 78 |
70 5 77
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom 𝑊 ) ↔ ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom 𝑊 ) ∧ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) ) ) |
| 79 |
18 20 68 78
|
mpbir3and |
⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom 𝑊 ) ) |