Metamath Proof Explorer


Theorem pj1lmhm

Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses pj1lmhm.l 𝐿 = ( LSubSp ‘ 𝑊 )
pj1lmhm.s = ( LSSum ‘ 𝑊 )
pj1lmhm.z 0 = ( 0g𝑊 )
pj1lmhm.p 𝑃 = ( proj1𝑊 )
pj1lmhm.1 ( 𝜑𝑊 ∈ LMod )
pj1lmhm.2 ( 𝜑𝑇𝐿 )
pj1lmhm.3 ( 𝜑𝑈𝐿 )
pj1lmhm.4 ( 𝜑 → ( 𝑇𝑈 ) = { 0 } )
Assertion pj1lmhm ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊s ( 𝑇 𝑈 ) ) LMHom 𝑊 ) )

Proof

Step Hyp Ref Expression
1 pj1lmhm.l 𝐿 = ( LSubSp ‘ 𝑊 )
2 pj1lmhm.s = ( LSSum ‘ 𝑊 )
3 pj1lmhm.z 0 = ( 0g𝑊 )
4 pj1lmhm.p 𝑃 = ( proj1𝑊 )
5 pj1lmhm.1 ( 𝜑𝑊 ∈ LMod )
6 pj1lmhm.2 ( 𝜑𝑇𝐿 )
7 pj1lmhm.3 ( 𝜑𝑈𝐿 )
8 pj1lmhm.4 ( 𝜑 → ( 𝑇𝑈 ) = { 0 } )
9 eqid ( +g𝑊 ) = ( +g𝑊 )
10 eqid ( Cntz ‘ 𝑊 ) = ( Cntz ‘ 𝑊 )
11 1 lsssssubg ( 𝑊 ∈ LMod → 𝐿 ⊆ ( SubGrp ‘ 𝑊 ) )
12 5 11 syl ( 𝜑𝐿 ⊆ ( SubGrp ‘ 𝑊 ) )
13 12 6 sseldd ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝑊 ) )
14 12 7 sseldd ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝑊 ) )
15 lmodabl ( 𝑊 ∈ LMod → 𝑊 ∈ Abel )
16 5 15 syl ( 𝜑𝑊 ∈ Abel )
17 10 16 13 14 ablcntzd ( 𝜑𝑇 ⊆ ( ( Cntz ‘ 𝑊 ) ‘ 𝑈 ) )
18 9 2 3 10 13 14 8 17 4 pj1ghm ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊s ( 𝑇 𝑈 ) ) GrpHom 𝑊 ) )
19 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
20 19 a1i ( 𝜑 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) )
21 9 2 3 10 13 14 8 17 4 pj1id ( ( 𝜑𝑦 ∈ ( 𝑇 𝑈 ) ) → 𝑦 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ( +g𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) )
22 21 adantrl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → 𝑦 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ( +g𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) )
23 22 oveq2d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠𝑊 ) ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ( +g𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) )
24 5 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → 𝑊 ∈ LMod )
25 simprl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
26 6 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → 𝑇𝐿 )
27 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
28 27 1 lssss ( 𝑇𝐿𝑇 ⊆ ( Base ‘ 𝑊 ) )
29 26 28 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → 𝑇 ⊆ ( Base ‘ 𝑊 ) )
30 13 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) )
31 14 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) )
32 8 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( 𝑇𝑈 ) = { 0 } )
33 17 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → 𝑇 ⊆ ( ( Cntz ‘ 𝑊 ) ‘ 𝑈 ) )
34 9 2 3 10 30 31 32 33 4 pj1f ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 𝑈 ) ⟶ 𝑇 )
35 simprr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → 𝑦 ∈ ( 𝑇 𝑈 ) )
36 34 35 ffvelrnd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ 𝑇 )
37 29 36 sseldd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑊 ) )
38 7 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → 𝑈𝐿 )
39 27 1 lssss ( 𝑈𝐿𝑈 ⊆ ( Base ‘ 𝑊 ) )
40 38 39 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) )
41 9 2 3 10 30 31 32 33 4 pj2f ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( 𝑈 𝑃 𝑇 ) : ( 𝑇 𝑈 ) ⟶ 𝑈 )
42 41 35 ffvelrnd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ 𝑈 )
43 40 42 sseldd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑊 ) )
44 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
45 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
46 27 9 19 44 45 lmodvsdi ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠𝑊 ) ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ( +g𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) = ( ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ( +g𝑊 ) ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) )
47 24 25 37 43 46 syl13anc ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( 𝑥 ( ·𝑠𝑊 ) ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ( +g𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) = ( ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ( +g𝑊 ) ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) )
48 23 47 eqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) = ( ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ( +g𝑊 ) ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) )
49 1 2 lsmcl ( ( 𝑊 ∈ LMod ∧ 𝑇𝐿𝑈𝐿 ) → ( 𝑇 𝑈 ) ∈ 𝐿 )
50 5 6 7 49 syl3anc ( 𝜑 → ( 𝑇 𝑈 ) ∈ 𝐿 )
51 50 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( 𝑇 𝑈 ) ∈ 𝐿 )
52 19 44 45 1 lssvscl ( ( ( 𝑊 ∈ LMod ∧ ( 𝑇 𝑈 ) ∈ 𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ∈ ( 𝑇 𝑈 ) )
53 24 51 25 35 52 syl22anc ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ∈ ( 𝑇 𝑈 ) )
54 19 44 45 1 lssvscl ( ( ( 𝑊 ∈ LMod ∧ 𝑇𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∈ 𝑇 )
55 24 26 25 36 54 syl22anc ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∈ 𝑇 )
56 19 44 45 1 lssvscl ( ( ( 𝑊 ∈ LMod ∧ 𝑈𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ 𝑈 ) ) → ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ∈ 𝑈 )
57 24 38 25 42 56 syl22anc ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ∈ 𝑈 )
58 9 2 3 10 30 31 32 33 4 53 55 57 pj1eq ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) = ( ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ( +g𝑊 ) ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) )
59 48 58 mpbid ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) )
60 59 simpld ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) )
61 60 ralrimivva ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( 𝑇 𝑈 ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) )
62 12 50 sseldd ( 𝜑 → ( 𝑇 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) )
63 eqid ( 𝑊s ( 𝑇 𝑈 ) ) = ( 𝑊s ( 𝑇 𝑈 ) )
64 63 subgbas ( ( 𝑇 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) → ( 𝑇 𝑈 ) = ( Base ‘ ( 𝑊s ( 𝑇 𝑈 ) ) ) )
65 62 64 syl ( 𝜑 → ( 𝑇 𝑈 ) = ( Base ‘ ( 𝑊s ( 𝑇 𝑈 ) ) ) )
66 65 raleqdv ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝑇 𝑈 ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ ( 𝑊s ( 𝑇 𝑈 ) ) ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) )
67 66 ralbidv ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( 𝑇 𝑈 ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊s ( 𝑇 𝑈 ) ) ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) )
68 61 67 mpbid ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊s ( 𝑇 𝑈 ) ) ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) )
69 63 1 lsslmod ( ( 𝑊 ∈ LMod ∧ ( 𝑇 𝑈 ) ∈ 𝐿 ) → ( 𝑊s ( 𝑇 𝑈 ) ) ∈ LMod )
70 5 50 69 syl2anc ( 𝜑 → ( 𝑊s ( 𝑇 𝑈 ) ) ∈ LMod )
71 ovex ( 𝑇 𝑈 ) ∈ V
72 63 19 resssca ( ( 𝑇 𝑈 ) ∈ V → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( 𝑊s ( 𝑇 𝑈 ) ) ) )
73 71 72 ax-mp ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( 𝑊s ( 𝑇 𝑈 ) ) )
74 eqid ( Base ‘ ( 𝑊s ( 𝑇 𝑈 ) ) ) = ( Base ‘ ( 𝑊s ( 𝑇 𝑈 ) ) )
75 63 44 ressvsca ( ( 𝑇 𝑈 ) ∈ V → ( ·𝑠𝑊 ) = ( ·𝑠 ‘ ( 𝑊s ( 𝑇 𝑈 ) ) ) )
76 71 75 ax-mp ( ·𝑠𝑊 ) = ( ·𝑠 ‘ ( 𝑊s ( 𝑇 𝑈 ) ) )
77 73 19 45 74 76 44 islmhm3 ( ( ( 𝑊s ( 𝑇 𝑈 ) ) ∈ LMod ∧ 𝑊 ∈ LMod ) → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊s ( 𝑇 𝑈 ) ) LMHom 𝑊 ) ↔ ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊s ( 𝑇 𝑈 ) ) GrpHom 𝑊 ) ∧ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊s ( 𝑇 𝑈 ) ) ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) ) )
78 70 5 77 syl2anc ( 𝜑 → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊s ( 𝑇 𝑈 ) ) LMHom 𝑊 ) ↔ ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊s ( 𝑇 𝑈 ) ) GrpHom 𝑊 ) ∧ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊s ( 𝑇 𝑈 ) ) ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) ) )
79 18 20 68 78 mpbir3and ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊s ( 𝑇 𝑈 ) ) LMHom 𝑊 ) )