| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pj1lmhm.l |
|- L = ( LSubSp ` W ) |
| 2 |
|
pj1lmhm.s |
|- .(+) = ( LSSum ` W ) |
| 3 |
|
pj1lmhm.z |
|- .0. = ( 0g ` W ) |
| 4 |
|
pj1lmhm.p |
|- P = ( proj1 ` W ) |
| 5 |
|
pj1lmhm.1 |
|- ( ph -> W e. LMod ) |
| 6 |
|
pj1lmhm.2 |
|- ( ph -> T e. L ) |
| 7 |
|
pj1lmhm.3 |
|- ( ph -> U e. L ) |
| 8 |
|
pj1lmhm.4 |
|- ( ph -> ( T i^i U ) = { .0. } ) |
| 9 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 10 |
|
eqid |
|- ( Cntz ` W ) = ( Cntz ` W ) |
| 11 |
1
|
lsssssubg |
|- ( W e. LMod -> L C_ ( SubGrp ` W ) ) |
| 12 |
5 11
|
syl |
|- ( ph -> L C_ ( SubGrp ` W ) ) |
| 13 |
12 6
|
sseldd |
|- ( ph -> T e. ( SubGrp ` W ) ) |
| 14 |
12 7
|
sseldd |
|- ( ph -> U e. ( SubGrp ` W ) ) |
| 15 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
| 16 |
5 15
|
syl |
|- ( ph -> W e. Abel ) |
| 17 |
10 16 13 14
|
ablcntzd |
|- ( ph -> T C_ ( ( Cntz ` W ) ` U ) ) |
| 18 |
9 2 3 10 13 14 8 17 4
|
pj1ghm |
|- ( ph -> ( T P U ) e. ( ( W |`s ( T .(+) U ) ) GrpHom W ) ) |
| 19 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 20 |
19
|
a1i |
|- ( ph -> ( Scalar ` W ) = ( Scalar ` W ) ) |
| 21 |
9 2 3 10 13 14 8 17 4
|
pj1id |
|- ( ( ph /\ y e. ( T .(+) U ) ) -> y = ( ( ( T P U ) ` y ) ( +g ` W ) ( ( U P T ) ` y ) ) ) |
| 22 |
21
|
adantrl |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> y = ( ( ( T P U ) ` y ) ( +g ` W ) ( ( U P T ) ` y ) ) ) |
| 23 |
22
|
oveq2d |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( x ( .s ` W ) y ) = ( x ( .s ` W ) ( ( ( T P U ) ` y ) ( +g ` W ) ( ( U P T ) ` y ) ) ) ) |
| 24 |
5
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> W e. LMod ) |
| 25 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
| 26 |
6
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> T e. L ) |
| 27 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 28 |
27 1
|
lssss |
|- ( T e. L -> T C_ ( Base ` W ) ) |
| 29 |
26 28
|
syl |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> T C_ ( Base ` W ) ) |
| 30 |
13
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> T e. ( SubGrp ` W ) ) |
| 31 |
14
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> U e. ( SubGrp ` W ) ) |
| 32 |
8
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( T i^i U ) = { .0. } ) |
| 33 |
17
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> T C_ ( ( Cntz ` W ) ` U ) ) |
| 34 |
9 2 3 10 30 31 32 33 4
|
pj1f |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( T P U ) : ( T .(+) U ) --> T ) |
| 35 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> y e. ( T .(+) U ) ) |
| 36 |
34 35
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` y ) e. T ) |
| 37 |
29 36
|
sseldd |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` y ) e. ( Base ` W ) ) |
| 38 |
7
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> U e. L ) |
| 39 |
27 1
|
lssss |
|- ( U e. L -> U C_ ( Base ` W ) ) |
| 40 |
38 39
|
syl |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> U C_ ( Base ` W ) ) |
| 41 |
9 2 3 10 30 31 32 33 4
|
pj2f |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( U P T ) : ( T .(+) U ) --> U ) |
| 42 |
41 35
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( ( U P T ) ` y ) e. U ) |
| 43 |
40 42
|
sseldd |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( ( U P T ) ` y ) e. ( Base ` W ) ) |
| 44 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 45 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 46 |
27 9 19 44 45
|
lmodvsdi |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ ( ( T P U ) ` y ) e. ( Base ` W ) /\ ( ( U P T ) ` y ) e. ( Base ` W ) ) ) -> ( x ( .s ` W ) ( ( ( T P U ) ` y ) ( +g ` W ) ( ( U P T ) ` y ) ) ) = ( ( x ( .s ` W ) ( ( T P U ) ` y ) ) ( +g ` W ) ( x ( .s ` W ) ( ( U P T ) ` y ) ) ) ) |
| 47 |
24 25 37 43 46
|
syl13anc |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( x ( .s ` W ) ( ( ( T P U ) ` y ) ( +g ` W ) ( ( U P T ) ` y ) ) ) = ( ( x ( .s ` W ) ( ( T P U ) ` y ) ) ( +g ` W ) ( x ( .s ` W ) ( ( U P T ) ` y ) ) ) ) |
| 48 |
23 47
|
eqtrd |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( x ( .s ` W ) y ) = ( ( x ( .s ` W ) ( ( T P U ) ` y ) ) ( +g ` W ) ( x ( .s ` W ) ( ( U P T ) ` y ) ) ) ) |
| 49 |
1 2
|
lsmcl |
|- ( ( W e. LMod /\ T e. L /\ U e. L ) -> ( T .(+) U ) e. L ) |
| 50 |
5 6 7 49
|
syl3anc |
|- ( ph -> ( T .(+) U ) e. L ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( T .(+) U ) e. L ) |
| 52 |
19 44 45 1
|
lssvscl |
|- ( ( ( W e. LMod /\ ( T .(+) U ) e. L ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( x ( .s ` W ) y ) e. ( T .(+) U ) ) |
| 53 |
24 51 25 35 52
|
syl22anc |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( x ( .s ` W ) y ) e. ( T .(+) U ) ) |
| 54 |
19 44 45 1
|
lssvscl |
|- ( ( ( W e. LMod /\ T e. L ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ ( ( T P U ) ` y ) e. T ) ) -> ( x ( .s ` W ) ( ( T P U ) ` y ) ) e. T ) |
| 55 |
24 26 25 36 54
|
syl22anc |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( x ( .s ` W ) ( ( T P U ) ` y ) ) e. T ) |
| 56 |
19 44 45 1
|
lssvscl |
|- ( ( ( W e. LMod /\ U e. L ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ ( ( U P T ) ` y ) e. U ) ) -> ( x ( .s ` W ) ( ( U P T ) ` y ) ) e. U ) |
| 57 |
24 38 25 42 56
|
syl22anc |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( x ( .s ` W ) ( ( U P T ) ` y ) ) e. U ) |
| 58 |
9 2 3 10 30 31 32 33 4 53 55 57
|
pj1eq |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( ( x ( .s ` W ) y ) = ( ( x ( .s ` W ) ( ( T P U ) ` y ) ) ( +g ` W ) ( x ( .s ` W ) ( ( U P T ) ` y ) ) ) <-> ( ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) /\ ( ( U P T ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( U P T ) ` y ) ) ) ) ) |
| 59 |
48 58
|
mpbid |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) /\ ( ( U P T ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( U P T ) ` y ) ) ) ) |
| 60 |
59
|
simpld |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) ) |
| 61 |
60
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` ( Scalar ` W ) ) A. y e. ( T .(+) U ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) ) |
| 62 |
12 50
|
sseldd |
|- ( ph -> ( T .(+) U ) e. ( SubGrp ` W ) ) |
| 63 |
|
eqid |
|- ( W |`s ( T .(+) U ) ) = ( W |`s ( T .(+) U ) ) |
| 64 |
63
|
subgbas |
|- ( ( T .(+) U ) e. ( SubGrp ` W ) -> ( T .(+) U ) = ( Base ` ( W |`s ( T .(+) U ) ) ) ) |
| 65 |
62 64
|
syl |
|- ( ph -> ( T .(+) U ) = ( Base ` ( W |`s ( T .(+) U ) ) ) ) |
| 66 |
65
|
raleqdv |
|- ( ph -> ( A. y e. ( T .(+) U ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) <-> A. y e. ( Base ` ( W |`s ( T .(+) U ) ) ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) ) ) |
| 67 |
66
|
ralbidv |
|- ( ph -> ( A. x e. ( Base ` ( Scalar ` W ) ) A. y e. ( T .(+) U ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) <-> A. x e. ( Base ` ( Scalar ` W ) ) A. y e. ( Base ` ( W |`s ( T .(+) U ) ) ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) ) ) |
| 68 |
61 67
|
mpbid |
|- ( ph -> A. x e. ( Base ` ( Scalar ` W ) ) A. y e. ( Base ` ( W |`s ( T .(+) U ) ) ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) ) |
| 69 |
63 1
|
lsslmod |
|- ( ( W e. LMod /\ ( T .(+) U ) e. L ) -> ( W |`s ( T .(+) U ) ) e. LMod ) |
| 70 |
5 50 69
|
syl2anc |
|- ( ph -> ( W |`s ( T .(+) U ) ) e. LMod ) |
| 71 |
|
ovex |
|- ( T .(+) U ) e. _V |
| 72 |
63 19
|
resssca |
|- ( ( T .(+) U ) e. _V -> ( Scalar ` W ) = ( Scalar ` ( W |`s ( T .(+) U ) ) ) ) |
| 73 |
71 72
|
ax-mp |
|- ( Scalar ` W ) = ( Scalar ` ( W |`s ( T .(+) U ) ) ) |
| 74 |
|
eqid |
|- ( Base ` ( W |`s ( T .(+) U ) ) ) = ( Base ` ( W |`s ( T .(+) U ) ) ) |
| 75 |
63 44
|
ressvsca |
|- ( ( T .(+) U ) e. _V -> ( .s ` W ) = ( .s ` ( W |`s ( T .(+) U ) ) ) ) |
| 76 |
71 75
|
ax-mp |
|- ( .s ` W ) = ( .s ` ( W |`s ( T .(+) U ) ) ) |
| 77 |
73 19 45 74 76 44
|
islmhm3 |
|- ( ( ( W |`s ( T .(+) U ) ) e. LMod /\ W e. LMod ) -> ( ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom W ) <-> ( ( T P U ) e. ( ( W |`s ( T .(+) U ) ) GrpHom W ) /\ ( Scalar ` W ) = ( Scalar ` W ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. ( Base ` ( W |`s ( T .(+) U ) ) ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) ) ) ) |
| 78 |
70 5 77
|
syl2anc |
|- ( ph -> ( ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom W ) <-> ( ( T P U ) e. ( ( W |`s ( T .(+) U ) ) GrpHom W ) /\ ( Scalar ` W ) = ( Scalar ` W ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. ( Base ` ( W |`s ( T .(+) U ) ) ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) ) ) ) |
| 79 |
18 20 68 78
|
mpbir3and |
|- ( ph -> ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom W ) ) |